Molecular Mechanisms of Signal Transduction by Two-Component Regulatory Systems
二元调控系统信号转导的分子机制
基本信息
- 批准号:9310656
- 负责人:
- 金额:$ 48.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-05-01 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAffectAmino Acid SequenceAmino AcidsAnimalsAntibiotic ResistanceAntibioticsArchitectureBacterial Antibiotic ResistanceBehaviorBindingBiochemistryBioinformaticsBiologicalBiological ProcessBiophysicsCatalysisCellsCharacteristicsComplexCrystallizationDataDependenceDevelopmentDiabetes MellitusDimerizationDiseaseElementsEngineeringEnvironmentEukaryotaExhibitsFrequenciesGenetic VariationGoalsGrowthHealthHistidineHumanImidazoleInfectionInvestigationKineticsLeadLearningLifeMalignant NeoplasmsMeasuresMicrobeMolecularMolecular BiologyMonitorOutputPharmaceutical PreparationsPhosphoric Monoester HydrolasesPhosphorylationPhosphotransferasesPhylogenetic AnalysisPhysiologyPlanet EarthPlantsPositioning AttributePredispositionProcessProkaryotic CellsPropertyProtein DephosphorylationProteinsReactionRegulationResearchSchemeSelf-control as a personality traitSignal TransductionSignaling ProteinStimulusStructureSystemTestingTherapeutic AgentsTimeVariantVirulenceWaterWorkbacterial resistancebiological information processingcell growthdesigndimerexperienceexperimental studygenome sequencinginformation processinginnovationinterestkillingsmicrobialmicroorganismpathogenresponsesensorsmall moleculestructural biology
项目摘要
PROJECT SUMMARY
The ability to respond to stimuli is often considered to be a key characteristic of life. Cells can detect new
conditions, transduce that information into a usable form, and execute an appropriate response. One common
signal transduction strategy is to represent information by the specific and transient placement of phosphoryl
groups on proteins. Errors in signal transduction can lead to diseases (e.g. cancer, diabetes), and drugs have
been developed to block aberrant signaling processes. Understanding the mechanisms, regulation, and impact
of protein phosphorylation is thus of fundamental interest, as well as of practical significance to human health.
Microorganisms are the dominant form of life on Earth by many measures, including genetic diversity, raw
numbers, environmental distribution, and evolutionary experience. Thus, it is logical to seek basic signal
transduction principles in microbes. Our long-term goal is comprehensive understanding of signal transduction
by two-component regulatory systems, which occur in microorganisms from all three phylogenetic domains, as
well as plants. In a basic two-component system, a sensor kinase (SK) detects stimuli and autophosphorylates
using ATP. A response regulator (RR) then catalyzes phosphotransfer from the SK (or from small molecules),
which turns on the response. RR dephosphorylation, either self-catalyzed or stimulated by another protein,
ends the response. Inclusion of histidine-containing phosphotransferase (Hpt) proteins results in more
complex multi-step phosphorelays by adding an Hpt and a second RR onto the basic SK to RR scheme. The
kinetics and directionality of phosphoryl group reactions are important to synchronize responses with stimuli.
Genome sequencing presents a challenge (a rapidly widening gap between the number of known proteins
and what can be studied experimentally) and an opportunity (diverse and extensive sequence data). To learn
how to reveal properties of hundreds of thousands of two-component proteins from sequence data alone, our
innovative research strategy focuses on amino acid sequence differences (rather than similarities) between the
conserved domains of SKs, Hpts, or RRs. Our well-established and productive experimental approach
integrates biochemistry, bioinformatics, biophysics, molecular biology, and structural biology. In this project,
we will identify factors that affect the kinetics of self-catalyzed RR phosphorylation and dephosphorylation (AIM
1), SK-stimulated dephosphorylation of RRs (AIM 2), and phosphotransfer reactions between Hpts and RRs
(AIM 3). We will also characterize the molecular mechanisms underlying each of these reactions.
Antibiotic resistance of bacterial and fungal pathogens is a major and increasing threat to human health.
RRs are central to most phosphotransfer reactions of two-component systems. Our study of binding of small
molecules to RRs may influence design of therapeutic agents to disable critical two-component systems of
microbial pathogens. The results of our project could also be used to predict or manipulate the signaling
kinetics of two-component systems. Fundamental principles of signal transduction may emerge as well.
项目摘要
对刺激的反应能力通常被认为是生活的关键特征。细胞可以检测到新的
条件,将信息转换为可用的形式,并执行适当的响应。一个常见
信号转导策略是通过磷酸化的特定和瞬态放置来表示信息
蛋白质组。信号转导错误可能导致疾病(例如癌症,糖尿病),并且药物具有
已开发以阻止异常信号传导过程。了解机制,调节和影响
因此,蛋白质磷酸化具有基本兴趣,并且对人类健康具有实际意义。
微生物是许多措施,包括遗传多样性,RAW,是地球上生命的主要形式
数字,环境分布和进化经验。因此,寻求基本信号是合乎逻辑的
微生物中的转导原理。我们的长期目标是对信号转导的全面理解
通过在所有三个系统发育结构域中的微生物中发生的两个组分调节系统,AS
和植物。在基本的两个组分系统中,传感器激酶(SK)检测刺激和自磷酸化。
使用ATP。然后,响应调节剂(RR)从SK(或小分子)催化磷酸转移,
打开响应。 RR去磷酸化,由另一种蛋白质自我催化或刺激
结束响应。纳入含有组氨酸的磷酸转移酶(HPT)蛋白会导致更多
通过在RR方案的基本SK中添加HPT和第二个RR来复杂的多步磷。这
磷酸组反应的动力学和方向性对于将反应与刺激同步很重要。
基因组测序提出了挑战(已知蛋白质数量之间的差距迅速扩大
以及可以通过实验研究的)和机会(多样化和广泛的序列数据)。学习
如何仅从序列数据中揭示数十万个两分量蛋白的性能,
创新研究策略的重点是氨基酸序列差异(而不是相似性)
SK,HPTS或RR的保守域。我们建立良好且富有成效的实验方法
整合生物化学,生物信息学,生物物理学,分子生物学和结构生物学。在这个项目中,
我们将确定影响自催化的RR磷酸化和去磷酸化动力学的因素(AIM
1),RRS的SK刺激(AIM 2)以及HPT和RR之间的磷酸转移反应
(目标3)。我们还将表征这些反应中每一个的分子机制。
细菌和真菌病原体的抗生素耐药性是对人类健康的主要威胁。
RR对于大多数两个组分系统的磷酸转移反应至关重要。我们对小的结合的研究
RRS分子可能会影响治疗剂的设计,以禁用关键的两组分系统
微生物病原体。我们项目的结果也可以用于预测或操纵信号
两个组件系统的动力学。信号转导的基本原理也可能出现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert B. Bourret其他文献
Robert B. Bourret的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert B. Bourret', 18)}}的其他基金
Molecular Mechanisms of Signal Transduction by Two-Component Regulatory Systems
二元调控系统信号转导的分子机制
- 批准号:
7931609 - 财政年份:2009
- 资助金额:
$ 48.58万 - 项目类别:
Molecular Mechanisms of Signal Transduction by Two-Component Regulatory Systems
二元调控系统信号转导的分子机制
- 批准号:
8464128 - 财政年份:1994
- 资助金额:
$ 48.58万 - 项目类别:
Molecular Mechanisms of Signaling in E. coli Chemotaxis
大肠杆菌趋化性信号转导的分子机制
- 批准号:
7151918 - 财政年份:1994
- 资助金额:
$ 48.58万 - 项目类别:
Molecular Mechanisms of Signal Transduction by Two-Component Regulatory Systems
二元调控系统信号转导的分子机制
- 批准号:
7916968 - 财政年份:1994
- 资助金额:
$ 48.58万 - 项目类别:
MOLECULAR MECHANISMS OF SIGNAL TRANDUCTION BY CHEY
Chey 的信号转导分子机制
- 批准号:
2701616 - 财政年份:1994
- 资助金额:
$ 48.58万 - 项目类别:
MOLECULAR MECHANISMS OF SIGNALING IN E COLI CHEMOTAXIS
大肠杆菌趋化性信号传导的分子机制
- 批准号:
6180358 - 财政年份:1994
- 资助金额:
$ 48.58万 - 项目类别:
Molecular Mechanisms of Signal Transduction by Two-Component Regulatory Systems
二元调控系统信号转导的分子机制
- 批准号:
7685867 - 财政年份:1994
- 资助金额:
$ 48.58万 - 项目类别:
Molecular Mechanisms of Signal Transduction by Two-Component Regulatory Systems
二元调控系统信号转导的分子机制
- 批准号:
8233800 - 财政年份:1994
- 资助金额:
$ 48.58万 - 项目类别:
Molecular Mechanisms of Signal Transduction by Two-Component Regulatory Systems
二元调控系统信号转导的分子机制
- 批准号:
7741749 - 财政年份:1994
- 资助金额:
$ 48.58万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Neoantigen-specific T cell responses for Fibrolamellar Hepatocellular Carcinoma
纤维板层肝细胞癌的新抗原特异性 T 细胞反应
- 批准号:
10609918 - 财政年份:2023
- 资助金额:
$ 48.58万 - 项目类别:
Structure-based Antiviral Design against HTLV-1 Protease
基于结构的 HTLV-1 蛋白酶抗病毒设计
- 批准号:
10750889 - 财政年份:2023
- 资助金额:
$ 48.58万 - 项目类别:
Mechanisms for cellular copper import via secreted cuproproteins
通过分泌铜蛋白输入细胞铜的机制
- 批准号:
10794575 - 财政年份:2022
- 资助金额:
$ 48.58万 - 项目类别:
Mechanisms for cellular copper import via secreted cuproproteins
通过分泌铜蛋白输入细胞铜的机制
- 批准号:
10669776 - 财政年份:2022
- 资助金额:
$ 48.58万 - 项目类别:
Mechanisms for cellular copper import via secreted cuproproteins
通过分泌铜蛋白输入细胞铜的机制
- 批准号:
10797773 - 财政年份:2022
- 资助金额:
$ 48.58万 - 项目类别: