NIH Director's Pioneer Award
NIH 院长先锋奖
基本信息
- 批准号:7683181
- 负责人:
- 金额:$ 76.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-09-30 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcademiaAcute Lymphocytic LeukemiaAddressAdoptedAdvisory CommitteesAffinityAffinity ChromatographyAlgorithmsAmericanAmino Acid SequenceAmino AcidsAnimal ModelAntibodiesAnticodonArtsAsthmaAttributes of ChemicalsAustraliaAwardBasic ScienceBasophilsBindingBiochemistryBiologicalBiological AvailabilityBiological FactorsBiopolymersBlast PhaseBreedingCC chemokine receptor 3CaliforniaCell Membrane PermeabilityCellsChemical EngineeringChemical EvolutionChemicalsChemistryChicagoClinicClinical TrialsCodeCollaborationsCollectionColorCommitCommunitiesComplexCoupledCrystallographyCysteineCytoskeletal FilamentsDNADataDengueDengue VirusDeuteriumDevelopmentDiscipline of NursingDiseaseDoctor of MedicineDoctor of PhilosophyDropsDrug PrescriptionsDrug resistanceEconomicsEducationElectrostaticsEmploymentEngineeringEnvironmentEnzymesEosinophiliaEquilibriumEuropeEvolutionExpenditureFederal GovernmentFigs - dietaryFloodsFreedomFundingGenerationsGenesGenetic CodeGleevecGoalsGrowthHumanHuman ResourcesHydrogenImageIn VitroIndividualIndustryInfectionInstitutesInstitutionInterferon ReceptorInterferonsJournalsKilogramKineticsKnockout MiceKnowledgeKnowledge acquisitionLaboratoriesLeadLearningLeftLeucine EnkephalinLibrariesLigand BindingLigandsLocationMapsMassachusettsMeasurementMeasuresMedical ResearchMedicineMembraneMetabolicMethodsModelingModificationMolecularMolecular BiologyMonitorMusMyelogenousNMR SpectroscopyNS2-3 proteaseNamesNatureNucleic AcidsOralOrganic ChemistryOrganic SynthesisPathway interactionsPatientsPeptide Nucleic AcidsPeptide Sequence DeterminationPeptide aptamersPeptidesPersonsPhage DisplayPharmaceutical PreparationsPharmacologic SubstancePhasePhosphotransferasesPhysiologyPilot ProjectsPlasmidsPolyribosomesPolystyrenesPopulationPositioning AttributePositron-Emission TomographyPostdoctoral FellowPricePrimatesPrincipal InvestigatorProbabilityProblem SolvingProcessProfessional EducationPropertyProtease InhibitorProtein FootprintingProtein Tyrosine KinaseProteinsProtonsPublicationsRNAReactionReagentRecordsResearchResearch InfrastructureResearch PersonnelResistanceResolutionResourcesRotationRouteRunningSCID MiceSchemeScienceScientistScreening for cancerScreening procedureSecureSeriesShapesSignal TransductionSocietiesSolidSolventsSpecificitySpeedStagingStructureStudentsSystemT-Cell ReceptorTechniquesTechnologyTest ResultTestingTherapeuticTranslatingTranslation ProcessTranslationsTriose-Phosphate IsomeraseTrustTubeTyrosineUnited StatesUnited States National Institutes of HealthUniversitiesVariantVertebral columnWorkZebrafishairway hyperresponsivenessanticancer researchaptamerbasecatalystcell typecombinatorial chemistrycostdesigndrug developmentdrug discoveryempoweredeosinophileotaxin receptorexperiencefallsgenetic manipulationgraduate studenthigh riskhigh throughput screeninginhibitor/antagonistinsightinterleukin-5 receptorkinase inhibitorknowledge baseleukemiamacromoleculemedical schoolsmillisecondmolecular mechanicsmolecular recognitionmouse modelmutantnew technologynewsnovelolfactory receptorpost-doctoral trainingpre-clinicalprofessorprogramsprotein protein interactionprotein structurereceptorresearch and developmentroutine practicesensorsmall moleculestructural biologytechnology developmentthree dimensional structuretooltrend
项目摘要
While the understanding of life at the molecular level has advanced with
breathtaking speed over the last century, a practical ability to solve medical problems
through molecular intervention has not developed at the same pace. The global HIV
epidemic, and our inability to effectively treat cancer, both evince this basic fact. Of
course, there are many reasons for this. The human body is a complex machine. We may
have a list of the parts, but the function of most of them remains a mystery. Recombinant
DNA technology, the scientific breakthrough that revolutionized the study of human
disease, has not also provided a general prescription for treating disease. Drugs are the
primary tools for this purpose, and the synthetic organic chemistry required to fashion
them today is much the same as it was a century ago. Finally, the economic hurdles
associated with drug discovery are daunting.
This Pioneer proposal addresses a technology that can close the gap between basic
research discoveries, and the application of such insights to medicine. The approach,
called "chemical evolution" (see below), provides the means to breed drugs out of
enormous synthetic small-molecule populations. It has the potential to transform drug
discovery from a process requiring hundreds of chemist-years and the infrastructure of a
large pharmaceutical company, to something a graduate student with knowledge of basic
molecular biology can accomplish in a month. Chemical evolution is closely related to
nucleic-acid and protein evolution techniques with proven track records in academia and
industry. Moreover, our recent pilot studies have definitively established the feasibility of
evolving small molecules[1-3]. These studies were the subject of two Science and
Technology review articles in Chemical and Engineering News over the last year, and
they were named a "Chemistry Highlight" for 2004 (a short annual compilation by the
American Chemical Society of key advances in chemistry)[4-6]. Despite its enormous
potential and the excitement it engenders, three different federal agencies have declined
to fund further development of the technology on the grounds that it is too ambitious and
too risky.
虽然在分子水平上对生命的理解不断进步
上个世纪惊人的速度,解决医疗问题的实际能力
通过分子干预的方法尚未以同样的速度发展。全球艾滋病毒
流行病以及我们无法有效治疗癌症,都证明了这一基本事实。的
当然,这有很多原因。人体是一台复杂的机器。我们可能
有一份零件清单,但其中大部分的功能仍然是个谜。重组
DNA技术,彻底改变人类研究的科学突破
病,还没有提供治疗疾病的通用方剂。药物是
为此目的的主要工具,以及时尚所需的合成有机化学
今天的他们与一个世纪前几乎没有什么不同。最后是经济障碍
与药物发现相关的工作是令人畏惧的。
这项先锋提案提出了一种可以缩小基本技术之间差距的技术
研究发现,以及这些见解在医学上的应用。该方法,
称为“化学进化”(见下文),提供了从物质中培育药物的方法
巨大的合成小分子群。它具有改造药物的潜力
从需要数百化学家年的过程和基础设施中发现
大型制药公司,对一个研究生有基础知识的东西
分子生物学可以在一个月内完成。化学演化与
核酸和蛋白质进化技术在学术界和学术界拥有良好的记录
行业。此外,我们最近的试点研究已经明确证实了
不断演化的小分子[1-3]。这些研究是两项《科学》和《科学》杂志的主题
去年化学与工程新闻中的技术评论文章,以及
它们被评为 2004 年“化学亮点”(由
美国化学会化学关键进展)[4-6]。尽管其规模巨大
潜力及其带来的兴奋,三个不同的联邦机构已经拒绝
资助该技术的进一步开发,理由是该技术过于雄心勃勃且
太冒险了。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Highly parallel translation of DNA sequences into small molecules.
- DOI:10.1371/journal.pone.0028056
- 发表时间:2012
- 期刊:
- 影响因子:3.7
- 作者:Weisinger RM;Wrenn SJ;Harbury PB
- 通讯作者:Harbury PB
Mesofluidic devices for DNA-programmed combinatorial chemistry.
- DOI:10.1371/journal.pone.0032299
- 发表时间:2012
- 期刊:
- 影响因子:3.7
- 作者:Weisinger RM;Marinelli RJ;Wrenn SJ;Harbury PB
- 通讯作者:Harbury PB
Expedient synthesis of a modular phosphate affinity reagent.
- DOI:10.1021/bc900538b
- 发表时间:2010-06-16
- 期刊:
- 影响因子:4.7
- 作者:Tilmans, Nicolas P.;Krusemark, Casey J.;Harbury, Pehr A. B.
- 通讯作者:Harbury, Pehr A. B.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PEHR A HARBURY其他文献
PEHR A HARBURY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PEHR A HARBURY', 18)}}的其他基金
A MOLECULAR RULER FOR DIRECT MEASUREMENT OF DISTANCE DISTRIBUTIONS IN SOLUTIONS
用于直接测量溶液中距离分布的分子尺
- 批准号:
7597961 - 财政年份:2007
- 资助金额:
$ 76.17万 - 项目类别:
A MOLECULAR RULER FOR DIRECT MEASUREMENT OF DISTANCE DISTRIBUTIONS IN SOLUTIONS
用于直接测量溶液中距离分布的分子尺
- 批准号:
7370442 - 财政年份:2006
- 资助金额:
$ 76.17万 - 项目类别:
A MOLECULAR RULER FOR DIRECT MEASUREMENT OF DISTANCE DISTRIBUTIONS IN SOLUTIONS
用于直接测量溶液中距离分布的分子尺
- 批准号:
7180421 - 财政年份:2005
- 资助金额:
$ 76.17万 - 项目类别:
相似国自然基金
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
活性脂质Arlm-1介导的自噬流阻滞在儿童T细胞急性淋巴细胞白血病化疗耐药逆转中的作用机制研究
- 批准号:82300182
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新型Skp2抑制剂阻抑Skp2/Bcr-Abl信号通道诱导Ph+急性淋巴细胞白血病细胞衰老及其机制研究
- 批准号:82300196
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
WDR68通过PRC1复合体增强H3K27ac修饰促进急性B淋巴细胞白血病发生的机制及预后价值研究
- 批准号:82302600
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
骨髓微环境PD-L1维持急性T淋巴细胞白血病中白血病干细胞功能的机制研究
- 批准号:
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:
相似海外基金
Bridging the gap: joint modeling of single-cell 1D and 3D genomics
弥合差距:单细胞 1D 和 3D 基因组学联合建模
- 批准号:
10572539 - 财政年份:2023
- 资助金额:
$ 76.17万 - 项目类别:
Alternatively spliced cell surface proteins as drivers of leukemogenesis and targets for immunotherapy
选择性剪接的细胞表面蛋白作为白血病发生的驱动因素和免疫治疗的靶点
- 批准号:
10648346 - 财政年份:2023
- 资助金额:
$ 76.17万 - 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 76.17万 - 项目类别:
Targeting CD83 to reduce leukemia relapse and GVHD after allogeneic hematopoietic cell transplantation
靶向CD83减少同种异体造血细胞移植后白血病复发和GVHD
- 批准号:
10573570 - 财政年份:2023
- 资助金额:
$ 76.17万 - 项目类别: