Tissue Engineering of Hematopoietic Bone

造血骨组织工程

基本信息

  • 批准号:
    7880481
  • 负责人:
  • 金额:
    $ 17.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-09-30 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Our long-term goal is to engineer hematopoietic bone ex vivo to treat disorders of both bone and hematopoiesis. The specific goal of this application is to produce bone that contains marrow with pluripotent, repopulating stem cells that can fulfill the long-term regenerative needs of patients, as well as provide structural integrity for the repair of bone defects. To achieve this goal, we have assembled a team of interactive investigators from Baylor College of Medicine (BCM) and Rice that have the required expertise in biology and engineering, which includes: hematopoiesis and stem cell biology (Goodell, BCM), bone development (Davis, BCM), vascular development (Hirschi, BCM & Rice), biomaterials and bioreactors (West and Mikos, Rice) and bioimaging (Barry and Sevick, BCM and Rice). Our overarching hypotheses are that the steps that lead to bone formation and the establishment of functional marrow and vasculature are dissectible and definable in a model of de novo bone formation; furthermore, by understanding the sequence and kinetics of the cellular and molecular events needed for this process, we will gain insight into how to recapitulate hematopoietic bone formation ex vivo for the propagation of pluripotent HSC in vitro and in vivo. Toward addressing these hypotheses, we have established a model of de novo bone formation in which vascularized, marrow-filled bone was generated in vivo, and demonstrated that the marrow formed within this bone structure enables the survival and propagation of functional HSC that are capable of long-term reconstitution of all blood cell lineages in vivo. We have begun the dissect and define the molecular steps that lead to hematopoietic bone formation and have established bioimaging techniques needed to track the fate and function of marrow-derived cells ex vivo and in vivo. We have designed and generated biomaterials that will enable cellular survival and propagation, and bioreactors in which bone and blood vessels are readily fabricated. In this application, we will integrate all of these components to engineer hematopoietic bone and test its functions in vitro and in vivo. Furthermore, we have established necessary links to BCM and Rice technology transfer offices to facilitate the transition of our research into biotech and clinical settings.
描述(由申请人提供):我们的长期目标是设计造血骨外体,以治疗骨骼和造血的疾病。该应用的具体目标是产生含有多能骨髓的骨骼,可重复的干细胞可以满足患者的长期再生需求,并为修复骨缺损的修复提供结构完整性。 To achieve this goal, we have assembled a team of interactive investigators from Baylor College of Medicine (BCM) and Rice that have the required expertise in biology and engineering, which includes: hematopoiesis and stem cell biology (Goodell, BCM), bone development (Davis, BCM), vascular development (Hirschi, BCM & Rice), biomaterials and bioreactors (West and Mikos, Rice) and生物成像(Barry and Sevick,BCM和米饭)。我们的总体假设是导致骨骼形成以及功能性骨髓和脉管系统的建立的步骤在从头形成的模型中是可辨认的,并且可以定义。此外,通过了解此过程所需的细胞和分子事件的序列和动力学,我们将深入了解如何在体外和体内概括多能HSC HSC的传播,从而在体内概括造血骨形成。为了解决这些假设,我们建立了一种从头骨形成的模型,在体内产生了血管化的,充满骨髓的骨骼的模型,并证明在该骨结构中形成的骨髓可以使功能性HSC的存活和繁殖能够长期重新结合所有血细胞谱系。我们已经开始解剖并定义了导致造血骨形成的分子步骤,并建立了跟踪骨髓衍生细胞的命运和功能所需的生物成像技术。我们设计并生成的生物材料将使细胞存活和繁殖能够,并容易制造骨骼和血管的生物反应器。在此应用中,我们将将所有这些成分集成到工程造血骨骼,并在体外和体内测试其功能。此外,我们已经建立了与BCM和水稻技术转让办公室的必要联系,以促进我们对生物技术和临床环境的研究过渡。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Covalent immobilization of stem cell factor and stromal derived factor 1α for in vitro culture of hematopoietic progenitor cells.
  • DOI:
    10.1016/j.actbio.2013.08.012
  • 发表时间:
    2013-12
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Cuchiara, Maude L.;Horter, Kelsey L.;Banda, Omar A.;West, Jennifer L.
  • 通讯作者:
    West, Jennifer L.
Three-dimensional photolithographic micropatterning: a novel tool to probe the complexities of cell migration.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Karen Kemper Hirschi其他文献

Karen Kemper Hirschi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Karen Kemper Hirschi', 18)}}的其他基金

2022 Endothelial Cell Phenotypes GRC and GRS
2022 内皮细胞表型 GRC 和 GRS
  • 批准号:
    10464521
  • 财政年份:
    2022
  • 资助金额:
    $ 17.39万
  • 项目类别:
miR-223 regulates endothelial to hematopoietic transition
miR-223 调节内皮细胞向造血细胞的转变
  • 批准号:
    10763971
  • 财政年份:
    2020
  • 资助金额:
    $ 17.39万
  • 项目类别:
miR-223 regulates endothelial to hematopoietic transition
miR-223 调节内皮细胞向造血细胞的转变
  • 批准号:
    10557218
  • 财政年份:
    2020
  • 资助金额:
    $ 17.39万
  • 项目类别:
miR-223 regulates endothelial to hematopoietic transition
miR-223 调节内皮细胞向造血细胞的转变
  • 批准号:
    10348182
  • 财政年份:
    2020
  • 资助金额:
    $ 17.39万
  • 项目类别:
Endothelial Cell Cycle State and Cell Fate
内皮细胞周期状态和细胞命运
  • 批准号:
    10454316
  • 财政年份:
    2019
  • 资助金额:
    $ 17.39万
  • 项目类别:
Endothelial Cell Cycle State and Cell Fate
内皮细胞周期状态和细胞命运
  • 批准号:
    10208947
  • 财政年份:
    2019
  • 资助金额:
    $ 17.39万
  • 项目类别:
Neurovascualar Regeneration
神经血管再生
  • 批准号:
    8632715
  • 财政年份:
    2014
  • 资助金额:
    $ 17.39万
  • 项目类别:
Neurovascualar Regeneration
神经血管再生
  • 批准号:
    8791687
  • 财政年份:
    2014
  • 资助金额:
    $ 17.39万
  • 项目类别:
Neurovascualar Regeneration
神经血管再生
  • 批准号:
    9002043
  • 财政年份:
    2014
  • 资助金额:
    $ 17.39万
  • 项目类别:
Neurovascualar Regeneration
神经血管再生
  • 批准号:
    9144260
  • 财政年份:
    2014
  • 资助金额:
    $ 17.39万
  • 项目类别:

相似国自然基金

分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
  • 批准号:
    12371308
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
资源受限下集成学习算法设计与硬件实现研究
  • 批准号:
    62372198
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于物理信息神经网络的电磁场快速算法研究
  • 批准号:
    52377005
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
  • 批准号:
    12302257
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向高维不平衡数据的分类集成算法研究
  • 批准号:
    62306119
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Recruitment and Retention for Alzheimer's Disease Diversity Genetic Cohorts in the ADSP (READD-ADSP)
ADSP 中阿尔茨海默病多样性遗传群体的招募和保留 (READD-ADSP)
  • 批准号:
    10654529
  • 财政年份:
    2022
  • 资助金额:
    $ 17.39万
  • 项目类别:
Predicting Alcohol Withdrawal using DNA Methylation
利用 DNA 甲基化预测酒精戒断情况
  • 批准号:
    10620314
  • 财政年份:
    2022
  • 资助金额:
    $ 17.39万
  • 项目类别:
Biomechanics, Biomaterials and Multimodal Tissue Imaging Core (BBMTI Core)
生物力学、生物材料和多模态组织成像核心(BBMTI 核心)
  • 批准号:
    10232836
  • 财政年份:
    2022
  • 资助金额:
    $ 17.39万
  • 项目类别:
Development of an intraoral device for therapeutic drug monitoring of anti-epileptic drugs
开发用于抗癫痫药物治疗药物监测的口内装置
  • 批准号:
    10452435
  • 财政年份:
    2022
  • 资助金额:
    $ 17.39万
  • 项目类别:
Predicting Alcohol Withdrawal using DNA Methylation
利用 DNA 甲基化预测酒精戒断情况
  • 批准号:
    10447464
  • 财政年份:
    2022
  • 资助金额:
    $ 17.39万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了