Endothelial Cell Cycle State and Cell Fate
内皮细胞周期状态和细胞命运
基本信息
- 批准号:10208947
- 负责人:
- 金额:$ 52.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:ArteriesBlood CirculationBlood VesselsBlood capillariesBlood flowCardiovascular systemCell Culture SystemCell CycleCell Cycle RegulationCell ProliferationCellsClinicalDataDefectDevelopmentEctodermEmbryonic DevelopmentEndodermEndothelial CellsEndotheliumEngineeringEnsureEvaluationExhibitsG1 ArrestG1 PhaseGene ExpressionGenesGrowthHumanIn VitroMaintenanceMesodermMetabolicModelingMolecularMusNatural regenerationNutrientOxygenPathologyPhenotypeProcessRegenerative MedicineRegulationResearchRoleSignal PathwaySignal TransductionStructureTestingTissue EngineeringTissuesTubeUp-RegulationVascular remodelingVascularizationVeinsVenousVenous MalformationWaste Productsarterioleblood vessel developmentcell growthembryonic stem cellhuman stem cellsin vivoin vivo Modelinjuredinjury and repairinsightischemic injurymechanotransductionmigrationmouse modelneovascularizationnotch proteinnovelpostnatalpreventrepairedreplacement tissueresponserestorationshear stressvascular injuryvasculogenesisvenule
项目摘要
Establishing a functional vascular network is a rate-limiting step in embryonic development, the repair of
injured tissues, and the engineering of tissue replacements. Although we have made progress in identifying
factors that promote endothelial cell proliferation and sprouting, we lack understanding of how to properly control
endothelial cell growth and phenotypic specialization during vascular remodeling, which has created a significant
roadblock for clinical therapies, tissue engineering and regenerative medicine. Although multiple signaling
pathways have been implicated in the regulation of arterial-venous network formation, including flow-induced
mechanotransduction and Notch signaling, the mechanisms by which these signals coordinately regulate
endothelial cell growth suppression and identity were unclear. Our recent studies revealed that remodeling
vascular plexi are subject to systemic blood circulation, and that shear stress of different magnitudes promotes
differential growth responses and gene expression. That is, arterial/arteriolar shear stress levels promote Notch
signaling, and downstream p27-induced late G1 phase arrest that enables arterial gene expression (Fang 2017).
Conversely, flow magnitudes typical of veins/venules induce early G1 arrest, and enables upregulation of venous
genes. Interestingly, distinct endothelial cell cycle states appear to be maintained in arteries vs. veins postnatally.
We know very little about the role of cell cycle control in endothelial cell fate decisions, or the differential signaling
pathways induced by vessel-specific flow magnitudes, and how they may coordinately induce and maintain
endothelial cell cycle state and identity. The scientific premise of our research is that endothelial cell cycle
control is required for proper arterial and venous specification, such that when endothelial cells are in different
cell cycle states, they exhibit different propensity for arterial vs. venous gene expression. Support for this idea
comes from studies in embryonic stem cells that show cells in early vs. late G1 phase have a propensity for
mesoderm/endoderm vs. ectoderm fate, respectively (Paulkin 2014). Thus, our hypothesis is that differential
flow forces in arteries and veins induce different intracellular signaling pathways that promote distinct
endothelial cell cycle states, creating distinct windows of opportunity for the regulation of arterial vs.
venous gene expression. To ensure scientific rigor, we will test this hypothesis in vivo in models of arterial-
venous network formation and repair, and in vitro in human endothelial cell culture systems that allow flow
manipulation. We will define mechanisms by which vessel-specific flow magnitudes modulate endothelial cell
cycle state, determine how distinct endothelial cell cycle states enable differential phenotypic specialization
(artery vs. vein), and determine whether manipulation of endothelial cell cycle state can prevent or correct
arterial-venous malformations and enhance post-injury vascular repair. Evaluation of this hypothesis will yield
novel fundamental insights into blood vessel formation and regeneration that can be used to create human
microvasculature ex vivo and treat vascular pathologies.
建立功能性血管网络是胚胎开发的限制步骤
受伤的组织和组织置换的工程。尽管我们在识别
促进内皮细胞增殖和发芽的因素,我们对如何正确控制
血管重塑期间内皮细胞的生长和表型专业化,这产生了重要的
用于临床疗法,组织工程和再生医学的障碍。虽然多个信号传导
途径已与动脉 - 观网形成的调节有关,包括流动诱导
机械传输和置换信号传导,这些信号协调调节的机制
内皮细胞生长抑制和身份尚不清楚。我们最近的研究表明,重塑
血管丛受到全身性血液循环的影响,而不同幅度的剪切应力会促进
差异生长反应和基因表达。也就是说,动脉/动脉剪切应力水平促进了缺口
信号传导和下游P27诱导的G1后期停滞,使动脉基因表达(Fang 2017)。
相反,静脉/静脉的典型流量大小会引起早期的G1停滞,并可以上调静脉
基因。有趣的是,在产后,在动脉与静脉中似乎保持了不同的内皮细胞周期状态。
我们对细胞周期控制在内皮细胞命运决策或差异信号的作用知之甚少
容器特异性流量诱导的途径,以及它们如何协调诱导和维持
内皮细胞周期状态和身份。我们研究的科学前提是内皮细胞周期
需要控制适当的动脉和静脉规范,因此当内皮细胞处于不同
细胞周期状态,它们表现出动脉与静脉基因表达的不同倾向。支持这个想法
来自在胚胎干细胞中的研究,这些干细胞显示早期细胞与G1晚期具有的倾向
中胚层/内胚层和外胚层命运(Paulkin 2014)。因此,我们的假设是差异
动脉和静脉中的流动诱导不同的细胞内信号通路,促进不同的细胞内信号通路
内皮细胞周期状态,为动脉VS的调节创造了不同的机会窗口。
静脉基因表达。为了确保科学严谨,我们将在动脉模型中在体内检验这一假设
静脉网络形成和修复,以及在人体内皮细胞培养系统中的体外,允许流动
操纵。我们将定义机制,该机制通过该机制调节容器特异性流量幅度调节内皮细胞
循环状态,确定不同的内皮细胞周期状态如何实现差异表型专业化
(动脉与静脉),并确定内皮细胞周期状态的操纵是否可以预防或纠正
动脉畸形并增强伤害后血管修复。评估该假设将产生
可用于创造人类的血管形成和再生的新型基本见解
微脉管系统离体和治疗血管病理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karen Kemper Hirschi其他文献
Karen Kemper Hirschi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karen Kemper Hirschi', 18)}}的其他基金
2022 Endothelial Cell Phenotypes GRC and GRS
2022 内皮细胞表型 GRC 和 GRS
- 批准号:
10464521 - 财政年份:2022
- 资助金额:
$ 52.61万 - 项目类别:
miR-223 regulates endothelial to hematopoietic transition
miR-223 调节内皮细胞向造血细胞的转变
- 批准号:
10763971 - 财政年份:2020
- 资助金额:
$ 52.61万 - 项目类别:
miR-223 regulates endothelial to hematopoietic transition
miR-223 调节内皮细胞向造血细胞的转变
- 批准号:
10557218 - 财政年份:2020
- 资助金额:
$ 52.61万 - 项目类别:
miR-223 regulates endothelial to hematopoietic transition
miR-223 调节内皮细胞向造血细胞的转变
- 批准号:
10348182 - 财政年份:2020
- 资助金额:
$ 52.61万 - 项目类别:
相似国自然基金
典型环境纳米材料与血液循环中蛋白质的相互作用及心血管毒性效应调控的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
典型环境纳米材料与血液循环中蛋白质的相互作用及心血管毒性效应调控的分子机制
- 批准号:22176206
- 批准年份:2021
- 资助金额:60.00 万元
- 项目类别:面上项目
基于血管振动激光散斑检测技术的皮瓣血液循环障碍智能预警方法研究
- 批准号:82102177
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
基于血管振动激光散斑检测技术的皮瓣血液循环障碍智能预警方法研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
胎盘血管形成和血液循环建立机制研究
- 批准号:82070504
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Vascular Determinants of Anesthesia-Induced Hypotension at the Extremes of Age
极端年龄时麻醉引起的低血压的血管决定因素
- 批准号:
10711597 - 财政年份:2023
- 资助金额:
$ 52.61万 - 项目类别:
Common mechanistic biomarkers of vascular and neuro-degeneration
血管和神经变性的常见机制生物标志物
- 批准号:
10567120 - 财政年份:2023
- 资助金额:
$ 52.61万 - 项目类别:
The role of gut-heart axis in acute alcohol intoxication-induced adverse cardiovascular events
肠心轴在急性酒精中毒诱发的不良心血管事件中的作用
- 批准号:
10847617 - 财政年份:2023
- 资助金额:
$ 52.61万 - 项目类别:
Biogenesis and Catabolism of Atherogenic Lipoproteins
致动脉粥样硬化脂蛋白的生物发生和分解代谢
- 批准号:
10628985 - 财政年份:2023
- 资助金额:
$ 52.61万 - 项目类别:
Understanding the role of the cerebral microvasculature in brain aging
了解脑微血管在大脑衰老中的作用
- 批准号:
10719620 - 财政年份:2023
- 资助金额:
$ 52.61万 - 项目类别: