A Universal Front End to Improve Assembly Outcomes for Next-Gen Sequencing and Re
通用前端可改善下一代测序和重新组装的结果
基本信息
- 批准号:7853052
- 负责人:
- 金额:$ 73.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-30 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAnimal ModelBar CodesCloningComplexComputing MethodologiesDNADNA SequenceDataData SetDevelopmentDevicesDigestionEncapsulatedEscherichia coliFrequenciesGelGenesGeneticGenetic VariationGenomeGenomicsGoalsHuman GenomeHuman ResourcesHydrogelsIndividualInformaticsLabelLawsLengthManufacturer NameMapsMedicineMetagenomicsMethodsMicrobeMicrocapsules drug delivery systemMicrofluidic MicrochipsMicrofluidicsModificationOligonucleotidesOrganismOutcomePreparationProcessProtocols documentationReadingReagentRelative (related person)ResearchRouteSamplingShotgunsSolidSystemTechnologyTestingTimebasecomputer infrastructurecostdesigngenome sequencingimprovedinstrumentmetagenomic sequencingmicroorganismnew technologynext generationnovelprototypepublic health relevance
项目摘要
DESCRIPTION (provided by applicant): DNA sequencing is currently in the midst of disruptive technological shifts, with 454, Illumina, and Solid providing us with enormous throughput increases and large reductions in cost per base. Massively parallel technologies deliver a few Gbp of sequence per week as short fragments, or reads. New applications of sequencing only recently considered impractical are enabled: personal genome sequencing, "metagenomics" analysis of 'soups' containing several, to hundreds of unique organisms, and finally, de novo sequencing of novel genomes of complex organisms. No matter how the sequencing is done, reads must be assembled computationally, if they are to be useful. Given the read length and read quality limitations of new instruments and the massive volume of data generated, the computational assembly problem is becoming critical, with the cost of computational infrastructure and personnel exceeding reagent and instrument-related costs. Moreover, the results of assembly are currently far from ideal; for example, much of the human genome remains invisible due to high percentage of repeats. We propose to develop a new "front end" to next-gen sequencers for DNA preparation, the "Read-Cloud Method", which can reduce computational cost of genome assembly by 2-3 orders of magnitude, produce more complete and accurate genomes, and make metagenomics tractable. We propose a hierarchical sequencing approach, without any need for bacterial cloning. We will achieve this by handling single DNA molecules, tiled across the genome with high redundancy, on microfluidic devices. We will design, prototype, and thoroughly test technology to (i) shear genomic DNA into 200- kbp fragments with narrow size distributions; (ii) randomly amplify each individual, 200-kbp DNA in isolation, within a porous gel microcontainer that will be formed around the dsDNA molecule within a microdevice; (iii) digest micro-encapsulated DNA into small fragments, of tunable size; (iv) bar-code the progeny of each 200-kbp DNA with a 12mer oligonucleotide, to identify each read as associated with a particular 200-kbp DNA. A planar microfluidic device will be fabricated to allow one unique bar- code sequence to be blunt-end-ligated to both DNA termini. Bar-coded DNA is pooled, and next-gen sequencing is done. The results are a highly reducible data set. The method and algorithm are applicable universally, to next-generation platforms. The PIs (Batzoglou, Barron, Shaqfeh, Quake) will collaborate to make an efficient approach to hierarchical sequencing in microfluidic devices.
PUBLIC HEALTH RELEVANCE: Project Narrative Gene sequencing is important to medicine. Our DNA sequencing method has the potential for reducing computational cost by orders of magnitude while making the assembled genomes significantly more complete and accurate. The key to this step is using microfluidic handling technologies to subdivide genomic DNA into 200kbp fragments, which are then amplified in isolation from each other and uniquely-labeled to form a highly reducible dataset for genomic assembly.
描述(由申请人提供):DNA测序目前处于破坏性技术转变的中间,有454,Illumina和固体为我们提供了巨大的吞吐量增加,每个基数的成本大幅下降。大量并行技术每周提供几英镑的序列,作为短片段或读取。启用了测序的新应用:个人基因组测序,对'汤的“元基因组学”分析,其中包含几种,对数百种独特的生物,最后是对复杂生物体新颖基因组的从头测序。无论测序如何完成,都必须在计算中组装读取,如果它们有用。鉴于新工具的读取长度和读取质量局限性以及生成的大量数据,计算组装问题变得至关重要,计算基础架构和人员的成本超过了试剂和仪器相关的成本。此外,组装的结果目前远非理想。例如,由于重复的比例很高,许多人类基因组仍然看不见。 我们建议将新的“前端”开发到下一代测序仪以进行DNA制备,即“读取云方法”,该方法可以将基因组组装的计算成本降低2-3个数量级,产生更完整和准确的基因组,并使元组学拖拉。我们提出了一种分层测序方法,而无需细菌克隆。我们将通过在微流体设备上处理具有高冗余性的单个DNA分子来实现这一目标。我们将设计,原型和彻底测试技术,以(i)剪切基因组DNA到具有较窄尺寸分布的200 kBp片段中; (ii)在多孔的凝胶微牙本质中随机放大每个个体,分别分离出200-kbp DNA,该微胶质体将在微电位内形成DsDNA分子周围形成; (iii)将微封装的DNA消化成可调尺寸的小片段; (iv)bar用12mer寡核苷酸代码每个200-kbp DNA的后代,以识别每个读数与特定的200-kbp DNA相关联。将制造平面微流体设备,以使一个独特的条形码序列钝化到两个DNA末端。汇总条编码的DNA,并进行下一代测序。结果是一个高度还原的数据集。该方法和算法普遍适用于下一代平台。 PIS(Batzoglou,Barron,Shaqfeh,Quake)将合作,在微流体设备中采用有效的方法来进行分层测序。
公共卫生相关性:项目叙事基因测序对医学很重要。我们的DNA测序方法具有通过数量级来降低计算成本的潜力,同时使组装基因组明显更完整和准确。此步骤的关键是使用微流体处理技术将基因组DNA细分为200KBP片段,然后将其彼此隔离并彼此分离,并标记为独特的标签以形成一个高度还原的基因组组装数据集。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Annelise Emily Barron其他文献
Annelise Emily Barron的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Annelise Emily Barron', 18)}}的其他基金
Synthetic Antimicrobial Peptoids for Treatment of Chronic Suppurative Otitis Media
用于治疗慢性化脓性中耳炎的合成抗菌肽
- 批准号:
10384258 - 财政年份:2021
- 资助金额:
$ 73.27万 - 项目类别:
Role of Innate Immune Dysregulation in the Etiology of Dementia
先天免疫失调在痴呆病因学中的作用
- 批准号:
10618888 - 财政年份:2020
- 资助金额:
$ 73.27万 - 项目类别:
Role of Innate Immune Dysregulation in the Etiology of Dementia
先天免疫失调在痴呆病因学中的作用
- 批准号:
10437903 - 财政年份:2020
- 资助金额:
$ 73.27万 - 项目类别:
Role of Innate Immune Dysregulation in the Etiology of Dementia
先天免疫失调在痴呆病因学中的作用
- 批准号:
10263930 - 财政年份:2020
- 资助金额:
$ 73.27万 - 项目类别:
A Universal Front End to Improve Assembly Outcomes for Next-Gen Sequencing and Re
通用前端可改善下一代测序和重新组装的结果
- 批准号:
7945357 - 财政年份:2009
- 资助金额:
$ 73.27万 - 项目类别:
Calvarial Regeneration using Biomatrix-Encapsulated Skeletal Progenitors
使用生物基质封装的骨骼祖细胞进行颅骨再生
- 批准号:
7855466 - 财政年份:2009
- 资助金额:
$ 73.27万 - 项目类别:
Calvarial Regeneration using Biomatrix-Encapsulated Skeletal Progenitors
使用生物基质封装的骨骼祖细胞进行颅骨再生
- 批准号:
7936866 - 财政年份:2009
- 资助金额:
$ 73.27万 - 项目类别:
Ampetoids as Biostable Functional Mimics of Antimicrobial Peptides
Ampetoids 作为抗菌肽的生物稳定功能模拟物
- 批准号:
7572890 - 财政年份:2007
- 资助金额:
$ 73.27万 - 项目类别:
Fast Mutation Detection by Tandem SSCP/HA on Microchips
通过微芯片上的串联 SSCP/HA 进行快速突变检测
- 批准号:
7485498 - 财政年份:2007
- 资助金额:
$ 73.27万 - 项目类别:
Ampetoids as Biostable Functional Mimics of Antimicrobial Peptides
Ampetoids 作为抗菌肽的生物稳定功能模拟物
- 批准号:
7383060 - 财政年份:2007
- 资助金额:
$ 73.27万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
利用碱基编辑器治疗肥厚型心肌病的动物模型研究
- 批准号:82300396
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
利用小型猪模型评价动脉粥样硬化易感基因的作用
- 批准号:32370568
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
丁苯酞通过调节细胞异常自噬和凋亡来延缓脊髓性肌萎缩症动物模型脊髓运动神经元的丢失
- 批准号:82360332
- 批准年份:2023
- 资助金额:31.00 万元
- 项目类别:地区科学基金项目
APOBEC3A驱动膀胱癌发生发展的动物模型及其机制研究
- 批准号:82303057
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Image Tools for Computational Cellular Barcoding and Automated Annotation
用于计算细胞条形码和自动注释的图像工具
- 批准号:
10552638 - 财政年份:2022
- 资助金额:
$ 73.27万 - 项目类别:
Image Tools for Computational Cellular Barcoding and Automated Annotation
用于计算细胞条形码和自动注释的图像工具
- 批准号:
10367874 - 财政年份:2022
- 资助金额:
$ 73.27万 - 项目类别:
Origins of Brain Somatic Mosaicism in Developmental Brain Disease
发育性脑疾病中脑体细胞嵌合的起源
- 批准号:
10466904 - 财政年份:2021
- 资助金额:
$ 73.27万 - 项目类别:
Investigating progenitor cell development and lineage relationships in the brain
研究大脑中祖细胞的发育和谱系关系
- 批准号:
10477060 - 财政年份:2021
- 资助金额:
$ 73.27万 - 项目类别:
Origins of Brain Somatic Mosaicism in Developmental Brain Disease
发育性脑疾病中脑体细胞嵌合的起源
- 批准号:
10299502 - 财政年份:2021
- 资助金额:
$ 73.27万 - 项目类别: