Origins of Brain Somatic Mosaicism in Developmental Brain Disease
发育性脑疾病中脑体细胞嵌合的起源
基本信息
- 批准号:10299502
- 负责人:
- 金额:$ 31.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-10 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAlgorithmsAllelesAnatomyAnimal ModelAstrocytesAutopsyBar CodesBehaviorBloodBrainBrain DiseasesCadaverCandidate Disease GeneCell LineageCell SizeCell divisionCellsChemicalsChildhoodClinicalComplexCortical DysplasiaDNADNA MethylationDNA RepairDNA Sequence AlterationDataDatabasesDetectionDevelopmentDevelopmental ProcessDiseaseDysplasiaElectroencephalographyElectroporationEmbryoEmbryonic DevelopmentEvaluationExcisionExposure toFRAP1 geneFreezingFrequenciesFunctional disorderFundingGeneticGenetic VariationGenomicsGenotypeGoalsGrowthHumanIndividualIntractable EpilepsyInvestmentsKnowledgeLifeMapsMetabolic stressMethodsMicrogliaMinorityModelingMosaicismMusMutationNeuronsNuclearOligodendrogliaOperative Surgical ProceduresOrganismOutcomePathogenicityPathway interactionsPatientsPatternPharmacologyPhenotypePlayPredispositionRecording of previous eventsResectedRoleSamplingShapesSignal TransductionSomatic CellSomatic MutationSorting - Cell MovementSynapsesTestingTissuesVariantWorkbrain cellbrain circuitrycell typeclinically significantcohortdaughter celldeep sequencingdemethylationdisabilitygene functiongenome sequencinggenomic variationhuman modelin uterointerestloss of functionmTOR Inhibitormigrationmouse modelmutantneocorticalneurogenesisneuron developmentneuronal circuitryneuropsychiatric disorderneuropsychiatrynovelrecruitrelating to nervous systemresilienceresponsesuccesssynaptic function
项目摘要
Abstract
Brain somatic mosaicism (BSM) refers to the accumulation of mutations within any of the billions of cells in
the human brain, which can occur from embryogenesis through adulthood. The extent, impact and
mechanisms of BSM on brain disease remain poorly understood. Prior work from the Brain Somatic
Mosaicism Network (BSMN), on which the PI served, made critical breakthroughs in reliability of mosaicism
detection, but also raised new questions, including the degree to which BSM exists in the healthy brain, and
the mechanisms by which BSM mutations explain disease.
Focal cortical dysplasia (FCD) is associated with substantial neuropsychiatric disability, and is the
most common cause of intractable epilepsy in childhood. Neuropsychiatric features are seen in 15-59% of
patients 5-7, and neuropathologically shows disrupted neurogenesis, migration, differentiation, and altered
neural excitability. We and others previously identified mosaic mutations in the mTOR pathway in a minority
of FCD cases, but most cases remain unsolved, and fundamental mechanisms are lacking.
We hypothesize that: 1] FCD mutations are similar to neutral somatic mutations in their patterns and
distributions, dictated by developmental processes, but differ in their functional effect. 2] BSM patterns, allelic
fractions (AFs) and allele sharing between cells can reconstruct cellular lineages and migratory histories. 3]
Study of FCD resected tissue can uncover novel causes of disease that would not be tolerated if present in
every cell. 4] BSM modeling in mouse can unravel disrupted signaling networks of complex mosaic mutations.
Our preliminary data shows: 1] From a post-mortem control cadaver, we validated 259 somatic
variants using 300X genome sequencing, and started to use these variants as ‘barcodes’ to reconstruct
lineage histories. 2] Deep sequencing from 314 FCD patient brain resections identified 12 new candidate
genes, highlighting signaling and synaptic dysfunction, and a novel ‘two-hit’ disease mechanisms. 3] We
established in utero mouse electroporation models to assess putative FCD variants as gain or loss of function,
and to assess effects of ‘single-hit’ and ‘two-hit’ mutations.
We propose three aims: 1] From control cadavers, we will reconstruct cell lineage across anatomical
domains using BSM as barcodes. 2] With this lineage information, we will study the origins of BSM
mutations in FCD, by recruiting new patients, performing both targeted and unbiased sequencing, and
identifying novel causes. 3] We will functionally validate putative deleterious alleles in animal models for
both ‘single-hit’ and ‘two-hit’ causes. The goal is to achieve a mechanistic understanding of the
extent of BSM in control individuals, to reconstruct neural lineages and to identify novel mechanisms in
developmental brain disease.
抽象的
脑体细胞嵌合体(BSM)是指大脑中数十亿个细胞中任何一个细胞内突变的积累。
人类大脑,可以从胚胎发生一直到成年。
BSM 对脑部疾病的机制仍知之甚少。
PI服务的Mosaicism Network(BSMN)在马赛克可靠性方面取得重大突破
检测,但也提出了新的问题,包括 BSM 在健康大脑中存在的程度,以及
BSM 突变解释疾病的机制。
局灶性皮质发育不良 (FCD) 与严重的神经精神障碍有关,是
儿童顽固性癫痫最常见的原因是神经精神特征,占 15-59%。
患者 5-7,神经病理学显示神经发生、迁移、分化和
我们和其他人之前发现了少数人 mTOR 通路中的嵌合突变。
FCD 案件数量众多,但大多数案件仍未解决,且缺乏基本机制。
我们期待:1] FCD 突变在模式上与中性体细胞突变相似,并且
分布,由发育过程决定,但其功能效果不同 2] BSM 模式,等位基因。
细胞之间的分数 (AF) 和等位基因共享可以重建细胞谱系和迁移历史 3]。
对 FCD 切除组织的研究可以发现新的疾病原因,如果这些原因存在于 FCD 中,则无法耐受
4] 小鼠 BSM 模型可以解开复杂嵌合突变的破坏信号网络。
我们的初步数据显示: 1] 从尸检对照尸体中,我们验证了 259 例体细胞
使用 300X 基因组测序发现变体,并开始使用这些变体作为“条形码”来重建
2] 对 314 例 FCD 患者脑切除的深度测序确定了 12 个新候选者
基因,强调信号传导和突触功能障碍,以及一种新的“二次打击”疾病机制 3] 我们。
在子宫小鼠电穿孔模型中建立,以评估假定的 FCD 变异作为功能的获得或丧失,
并评估“单次打击”和“两次打击”突变的影响。
我们提出三个目标: 1] 从对照尸体中,我们将重建跨解剖学的细胞谱系
使用 BSM 作为条形码的域 2] 有了这些谱系信息,我们将研究 BSM 的起源。
FCD 突变,通过招募新患者、进行靶向和无偏测序,以及
3]我们将在动物模型中对假定的有害等位基因进行功能验证。
“单次打击”和“两次打击”的原因都是为了实现对这一现象的机械理解。
控制个体中 BSM 的程度,以重建神经谱系并识别新机制
发育性脑疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSEPH G GLEESON其他文献
JOSEPH G GLEESON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSEPH G GLEESON', 18)}}的其他基金
Origins of Brain Somatic Mosaicism in Developmental Brain Disease
发育性脑疾病中脑体细胞嵌合的起源
- 批准号:
10466904 - 财政年份:2021
- 资助金额:
$ 31.6万 - 项目类别:
University of California San Diego Neuroscience Microscopy Imaging Core
加州大学圣地亚哥分校神经科学显微成像核心
- 批准号:
10524688 - 财政年份:2021
- 资助金额:
$ 31.6万 - 项目类别:
Origins of Brain Somatic Mosaicism in Developmental Brain Disease
发育性脑疾病中脑体细胞嵌合的起源
- 批准号:
10669715 - 财政年份:2021
- 资助金额:
$ 31.6万 - 项目类别:
Project I - Human genetics of meningomyelocele and risk mitigation by folic acid
项目 I - 脑膜脊髓膨出的人类遗传学和叶酸降低风险
- 批准号:
10300070 - 财政年份:2020
- 资助金额:
$ 31.6万 - 项目类别:
Developmental Mechanisms of Human Meningomyelocele
人类脑膜脊髓膨出的发生机制
- 批准号:
10533735 - 财政年份:2020
- 资助金额:
$ 31.6万 - 项目类别:
Developmental Mechanisms of Human Meningomyelocele
人类脑膜脊髓膨出的发生机制
- 批准号:
10300066 - 财政年份:2020
- 资助金额:
$ 31.6万 - 项目类别:
Developmental Mechanisms of Human Meningomyelocele
人类脑膜脊髓膨出的发生机制
- 批准号:
10154461 - 财政年份:2020
- 资助金额:
$ 31.6万 - 项目类别:
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高效非完全信息对抗性团队博弈求解算法研究
- 批准号:62376073
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
The predicative values of vascular and metabolic disorders for risk of incident mild cognitive impairment and dementia
血管和代谢紊乱对发生轻度认知障碍和痴呆风险的预测价值
- 批准号:
10661996 - 财政年份:2023
- 资助金额:
$ 31.6万 - 项目类别:
Estimating the Contribution of Alcohol and Metabolic Risk to Liver Disease Progression to Inform Personalized Interventions
估计酒精和代谢风险对肝病进展的影响,为个性化干预措施提供信息
- 批准号:
10352120 - 财政年份:2022
- 资助金额:
$ 31.6万 - 项目类别:
Systems biological assessment of T cell responses to vaccination
T 细胞对疫苗接种反应的系统生物学评估
- 批准号:
10584571 - 财政年份:2022
- 资助金额:
$ 31.6万 - 项目类别:
Systems biological assessment of T cell responses to vaccination
T 细胞对疫苗接种反应的系统生物学评估
- 批准号:
10419280 - 财政年份:2022
- 资助金额:
$ 31.6万 - 项目类别: