Uncovering the metabolic underpinnings of T cell exhaustion
揭示 T 细胞耗竭的代谢基础
基本信息
- 批准号:10707255
- 负责人:
- 金额:$ 64.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-19 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:Acetyl Coenzyme AAcetylcysteineAconitate HydrataseAntigensAntioxidantsAtrophicBiologyBlocking AntibodiesCell physiologyCellsCellular biologyCharacteristicsChronicCitratesCitric Acid CycleCytosolDataEnvironmentExposure toFatty AcidsFunctional disorderGenesGeneticGenetic TranscriptionGlucoseHypoxiaImmuneImmunityImmunosuppressionImmunotherapyIn VitroKnockout MiceLipidsLipolysisMalignant NeoplasmsMediatingMetabolicMetabolic stressMetabolismMitochondriaModalityModelingMonoclonal AntibodiesNutrientObesityOxidative StressOxygenPD-1 blockadePathway interactionsPatientsPeroxidesPhenotypePhosphoric Monoester HydrolasesPhosphorylationPhosphotyrosinePlayPredispositionProductionProtein Tyrosine PhosphataseProteomeProteomicsReactive Oxygen SpeciesRegulatory T-LymphocyteReportingRepressionRoleSignal TransductionSourceStressT cell differentiationT-LymphocyteTechnologyTissuesTumor ImmunityUp-RegulationWeightanti-canceranti-tumor immune responsebiological adaptation to stressconditional knockoutcytokinecytotoxiccytotoxicitydesignexhaustexhaustionfatty acid oxidationglucose uptakeimmune cell infiltrateimprovedin vivoinhibitorlipid biosynthesismembermitochondrial dysfunctionneoplastic cellnovelnovel therapeuticsnutrient deprivationoverexpressionpatient subsetspharmacologicpreventprogenitorprogrammed cell death protein 1programsresponseself-renewalsuccesstranscriptomicstumor eradicationtumor growthuptake
项目摘要
PROJECT SUMMARY/ABSTRACT
The successes of immunotherapies like blockade of co-inhibitory `checkpoint' molecules have changed the
treatment paradigm of cancer. However, the fact that robust responses are restricted to a subset of patients
highlights the need to further understand the biology of exhausted T cells: what drives their differentiation,
maintains their dysfunction, and how they may be reinvigorated to eradicate tumor cells. Our lab and others
have revealed that metabolic stress and mitochondrial dysfunction are key drivers in T cell exhaustion, both
from a cell extrinsic and cell intrinsic perspective. We recently reported that mitochondrial stress and reactive
oxygen species (ROS) production, driven to intolerable levels under hypoxic environments in the face of
persistent antigen, was sufficient to deviate cells into a terminally exhausted fate. Antioxidants both
pharmacologic and genetic could bias T cell differentiation away from exhaustion to more functional fates. But precisely how ROS production alters T cell fate and function remains unclear. One of the more intriguing
observations was elevating ROS via mitochondrial dysfunction altered T cell signaling: as peroxide is one of
the more potent inhibitors of tyrosine phosphatases, elevating ROS alone mimicked TCR and other
phosphotyrosine signals. ROS also dramatically reprograms cellular metabolism: by inhibiting aconitase, citrate is driven from the mitochondria where it is converted to acetyl-CoA, acting as a substrate for de novo
lipogenesis. As a result, while exhausted cells possess dysfunctional mitochondria and compete poorly for
glucose, they are loaded with lipid droplets and repress fatty acid oxidiation and lipolysis. While we know that
mitochondrial stress can drive T cells to exhaustion and that terminally exhausted T cells are metabolically
insufficient, the mechanisms that ultimately drive and enforce the phenotype remain unclear. In this Proposal,
we will identify the metabolic underpinnings of T cell exhaustion: how metabolic stress can interfere with
signaling, transcription, and differentiation. AIM 1: Determine how oxidative stress alters T cell signaling
cascades at the level of phosphatase inhibition. ROS play central roles in signaling as inhibitors of tyrosine
phosphatases. We will determine the role of ROS in exhausted T cell function in vivo, and use proteomics and
transcriptomic technologies to identify the phosphorylation cascades susceptible to ROS induction. AIM 2:
Identify how ROS-mediated changes in metabolic flux undermine T cell function. In this Aim, we will explore
the role increased lipid storage plays in T cell function and ask whether these elevated levels of lipids
represent `dead weight' or an untapped fuel source. AIM 3: Define the importance of altered nutrient pathways induced through oxidative stress responses. Our data suggest Slc16a11 similarly supports lactate uptake into exhausted T cells and maintains their dysfunctional state. Using a conditional knockout mouse and blocking antibodies, we will determine the importance of monocarboxylate metabolism in exhausted T cell biology.
项目概要/摘要
免疫疗法的成功,例如封锁共抑制“检查点”分子,已经改变了
癌症的治疗范式。然而,事实上,强烈的反应仅限于一小部分患者
强调需要进一步了解耗竭 T 细胞的生物学:是什么驱动了它们的分化,
维持它们的功能障碍,以及如何重新激活它们以根除肿瘤细胞。我们的实验室和其他
研究表明,代谢应激和线粒体功能障碍是 T 细胞耗竭的关键驱动因素
从细胞外在和细胞内在的角度来看。我们最近报道线粒体应激和反应性
氧气(ROS)的产生,在缺氧环境下达到了无法忍受的水平
持久性抗原足以使细胞陷入最终疲惫的命运。抗氧化剂两者
药理学和遗传因素可能会使 T 细胞分化从疲惫状态转向更具功能性的命运。但 ROS 的产生究竟如何改变 T 细胞的命运和功能仍不清楚。其中比较有趣的一个
观察结果显示,线粒体功能障碍改变了 T 细胞信号传导,从而提高了 ROS:因为过氧化物是其中之一
更有效的酪氨酸磷酸酶抑制剂,单独提高 ROS 模拟 TCR 和其他
磷酸酪氨酸信号。 ROS 还可以显着地重新编程细胞代谢:通过抑制乌头酸酶,柠檬酸盐从线粒体中被转化为乙酰辅酶A,作为从头的底物
脂肪生成。因此,虽然精疲力竭的细胞拥有功能失调的线粒体,并且在竞争中表现不佳
葡萄糖,它们载有脂滴并抑制脂肪酸氧化和脂肪分解。虽然我们知道
线粒体应激可促使 T 细胞耗尽,而最终耗尽的 T 细胞会发生代谢反应
但最终驱动和强化表型的机制仍不清楚。在本提案中,
我们将确定 T 细胞耗竭的代谢基础:代谢压力如何干扰
信号传导、转录和分化。目标 1:确定氧化应激如何改变 T 细胞信号传导
磷酸酶抑制水平的级联反应。 ROS 作为酪氨酸抑制剂在信号传导中发挥核心作用
磷酸酶。我们将确定 ROS 在体内耗竭 T 细胞功能中的作用,并利用蛋白质组学和
转录组技术可识别易受 ROS 诱导影响的磷酸化级联。目标2:
确定 ROS 介导的代谢通量变化如何破坏 T 细胞功能。为了这个目标,我们将探索
脂质储存增加在 T 细胞功能中所起的作用,并询问脂质水平是否升高
代表“自重”或未开发的燃料来源。目标 3:定义氧化应激反应引起的营养途径改变的重要性。我们的数据表明,Slc16a11 同样支持疲惫的 T 细胞摄取乳酸并维持其功能障碍状态。使用条件敲除小鼠和封闭抗体,我们将确定单羧酸代谢在疲惫的 T 细胞生物学中的重要性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Greg M. Delgoffe其他文献
Lymphocyte Activation Gene-3 Maintains Mitochondrial and Metabolic Quiescence in Naive CD4+ T Cells.
淋巴细胞激活基因 3 维持初始 CD4 T 细胞的线粒体和代谢静止。
- DOI:
10.1016/j.celrep.2019.03.004 - 发表时间:
2019-04-02 - 期刊:
- 影响因子:8.8
- 作者:
Dana M Previte;Christina Martins;Erin C O'Connor;Meghan L. Marré;G. Coudriet;Noah W Beck;Ashley V Menk;Rebecca H. Wright;H. Tse;Greg M. Delgoffe;J. Piganelli - 通讯作者:
J. Piganelli
670 Oxidative stress originating in the mitochondria damages telomeres sufficient to drive certain features of T cell dysfunction
第670章 起源于线粒体的氧化应激会损害端粒,足以驱动T细胞功能障碍的某些特征
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:10.9
- 作者:
Dayana B Rivadeneira;Jess Yana;Sanjana A Thosar;M. Bruchez;Patricia Lynn;Greg M. Delgoffe - 通讯作者:
Greg M. Delgoffe
Metabolic Consequences of T-cell Costimulation in Anticancer Immunity
T 细胞共刺激在抗癌免疫中的代谢后果
- DOI:
10.1158/2326-6066.cir-19-0115 - 发表时间:
2019-10-01 - 期刊:
- 影响因子:10.1
- 作者:
Á. Teijeira;S. Garasa;I. Etxeberría;M. Gato;I. Melero;Greg M. Delgoffe - 通讯作者:
Greg M. Delgoffe
Response to Comment on “Cutting Edge: Regulatory T Cells Do Not Mediate Suppression via Programmed Cell Death Pathways”
对“前沿:调节性 T 细胞不通过程序性细胞死亡途径介导抑制”评论的回应
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:4.4
- 作者:
Andrea L. Szymczak;Greg M. Delgoffe;D. Green;D. Vignali - 通讯作者:
D. Vignali
Altered costimulatory signals and hypoxia support chromatin landscapes limiting the functional potential of exhausted T cells in cancer
共刺激信号的改变和缺氧支持染色质景观限制了癌症中耗尽的 T 细胞的功能潜力
- DOI:
10.1101/2021.07.11.451947 - 发表时间:
2021-07-12 - 期刊:
- 影响因子:0
- 作者:
B. R. Ford;Natalie L. Rittenhouse;Nicole E. Scharping;Paolo D. A. Vignali;A. Frisch;Ronal M. Peralta;Greg M. Delgoffe;Amanda C. Poholek - 通讯作者:
Amanda C. Poholek
Greg M. Delgoffe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Greg M. Delgoffe', 18)}}的其他基金
Dissecting the role of hypoxia in T cell differentiation in cancer
剖析缺氧在癌症 T 细胞分化中的作用
- 批准号:
10578000 - 财政年份:2023
- 资助金额:
$ 64.04万 - 项目类别:
Metabolic control of regulatory T cell functional identity
调节性 T 细胞功能特性的代谢控制
- 批准号:
10677731 - 财政年份:2022
- 资助金额:
$ 64.04万 - 项目类别:
Uncovering the metabolic underpinnings of T cell exhaustion
揭示 T 细胞耗竭的代谢基础
- 批准号:
10593593 - 财政年份:2022
- 资助金额:
$ 64.04万 - 项目类别:
Metabolic control of regulatory T cell functional identity
调节性 T 细胞功能特性的代谢控制
- 批准号:
10510537 - 财政年份:2022
- 资助金额:
$ 64.04万 - 项目类别:
Exploring and exploiting metabolic plasticity in regulatory T cells
探索和利用调节性 T 细胞的代谢可塑性
- 批准号:
9348845 - 财政年份:2017
- 资助金额:
$ 64.04万 - 项目类别:
Elucidating the regulation of interleukin-35, a regulatory cytokine, in T cells
阐明 T 细胞中调节性细胞因子 IL-35 的调节
- 批准号:
8432601 - 财政年份:2012
- 资助金额:
$ 64.04万 - 项目类别:
Elucidating the regulation of interleukin-35, a regulatory cytokine, in T cells
阐明 T 细胞中调节性细胞因子 IL-35 的调节
- 批准号:
8255282 - 财政年份:2012
- 资助金额:
$ 64.04万 - 项目类别:
Elucidating the regulation of interleukin-35, a regulatory cytokine, in T cells
阐明 T 细胞中调节性细胞因子 IL-35 的调节
- 批准号:
8610875 - 财政年份:2012
- 资助金额:
$ 64.04万 - 项目类别:
Project 1: Hypoxia and metabolic dysregulation as a targetable barrier to immunotherapy in head and neck squamous cell carcinoma (HNSCC)
项目 1:缺氧和代谢失调作为头颈鳞状细胞癌 (HNSCC) 免疫治疗的目标障碍
- 批准号:
10331957 - 财政年份:2004
- 资助金额:
$ 64.04万 - 项目类别:
Project 1: Hypoxia and metabolic dysregulation as a targetable barrier to immunotherapy in head and neck squamous cell carcinoma (HNSCC)
项目 1:缺氧和代谢失调作为头颈鳞状细胞癌 (HNSCC) 免疫治疗的目标障碍
- 批准号:
10704505 - 财政年份:2004
- 资助金额:
$ 64.04万 - 项目类别:
相似国自然基金
乙酰半胱氨酸通过PI3K/AKT/mTOR通路增强CAR-CIK的抗肿瘤作用和机制研究
- 批准号:82303762
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
N-乙酰半胱氨酸介导线粒体SIRT3活化促进老年骨质疏松性骨修复的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于自噬研究N-乙酰-L-半胱氨酸促进毕赤酵母分泌重组猪促卵泡素的作用机制
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
N-乙酰半胱氨酸介导成骨细胞circRNA_003251表达促进骨修复的机制研究
- 批准号:82072442
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
N-乙酰半胱氨酸调控山羊繁殖机能的分子机制研究
- 批准号:
- 批准年份:2020
- 资助金额:36 万元
- 项目类别:地区科学基金项目