Microfluidic Impedance Red Cell Assay (MIRCA) for Emerging Pharmacologic and Gene based Therapies for Sickle Cell Disease
微流控阻抗红细胞测定 (MIRCA) 用于镰状细胞病的新兴药理学和基因疗法
基本信息
- 批准号:10687427
- 负责人:
- 金额:$ 66.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-12 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Abnormal HemoglobinsAcademiaAdhesivesAdoptionAffectAmericanBasic ScienceBiological AssayBiological MarkersBiomedical EngineeringBiomimeticsBiophysicsBloodBlood BanksBlood CirculationBlood VesselsBlood specimenCell physiologyCellular AssayClinicClinicalClinical TrialsCollaborationsDevelopmentDevicesDiabetes MellitusDiseaseEndotheliumEngineeringErythrocytesEtiologyEventExplosionFeedbackFunctional disorderGene therapy trialGuidelinesHealthHematological DiseaseHematologistHematologyHereditary DiseaseHypoxiaIncentivesIndividualInheritedKidney FailureLaboratoriesLesionMalariaMeasurementMeasuresMethodsMicrofluidic MicrochipsMicrofluidicsModificationMonitorOrganOrgan failureOutcomePainPathologicPathologyPatient CarePatient MonitoringPatientsPharmaceutical PreparationsPharmacologyPhysiciansPopulationPropertyReportingReproducibilityResearch Project GrantsScientistSelection for TreatmentsSeverity of illnessSickle Cell AnemiaSurrogate EndpointTechnologyTestingTherapeuticTrainingTranslatingTranslationsValidationWorkanalytical toolblood damagedesigndiagnostic toolelectric impedanceexperiencegene therapyindexinginnovationinnovative technologiesinstrumentationmicrofluidic technologymortalitynovelpolymerizationportabilityprimary endpointprognostic valuetooltransfusion medicineuser-friendlyvaso-occlusive pain
项目摘要
PROJECT SUMMARY
Acquired or inherited diseases can alter the red blood cell (RBC), causing severe clinical complications
affecting the vasculature and organ health. Inherited red cell disorders, renal failure, diabetes, and blood bank
storage lesions can all produce stiff, non-deformable RBCs. Red cell stiffness is particularly problematic in sickle
cell disease (SCD), a debilitating inherited blood disorder. An estimated 100,000 individuals in the US, and
millions more world-wide, have SCD. The field has experienced an explosion of novel SCD therapeutics,
designed to target specific individual abnormalities in the RBC in the last five years. Numerous gene-based
therapies intending to cure SCD are in clinical trials. This marked shift in SCD therapeutics produced a need for
diagnostics and analytical tools that assess RBC health and quality. We need biomarkers of red cell function to
serve as endpoints in clinical trials, assist in optimal drug selection and personalized monitoring for the individual,
and to determine if gene-based therapy has normalized the red cell. Many aspects of the red cell must be
assessed, but a key feature is deformability. There is a lack of robust, inexpensive devices sensitive enough to
capture small populations of poorly deformable red cells able to continue to hemolyze, damage the blood vessels,
and cause organ damage and early mortality. It is essential that we vet therapies for their ability to normalize the
entire population of red cells. Here we propose to develop and translate the Microfluidic Impedance Red Cell
Assay (MIRCA) to functionally measure red cell deformability, reported as Occlusion Index (OI) of a biomimetic
microcapillary network array on a chip. We propose an innovative approach and a novel collaboration between
engineers and a hematology-trained physician scientist. We will do so with the following steps:
1. We will achieve instrumentation and analytical validation of MIRCA measurement of red cell OI. Analytic
validation will be performed both in PI’s laboratory (Dr. Umut Gurkan, CWRU) and in Co-I’s hematology
laboratory (Dr. Vivien Sheehan, Emory) to prove generalizability and permit stakeholder feedback and design
modification.
2. We will clinically validate MIRCA by assessing the association between OI and clinical complications and
traditional laboratory measures of disease severity in SCD.
3. We will expand the use of the optimized MIRCA to the clinical space by demonstrating its prognostic value
in longitudinal assessments of patients with SCD experiencing clinical complications and transitions in
therapy.
Using our unique collaboration between biomedical engineers and a hematology trained physician-scientist,
we will optimize, validate, and achieve clinical adoption of MIRCA technology in clinical trials and patient care
for individuals living with SCD in the US and world-wide.
项目概要
获得性或遗传性疾病会改变红细胞 (RBC),导致严重的临床并发症
影响脉管系统和器官健康。遗传性红细胞疾病、肾功能衰竭、糖尿病和血库。
储存病变都会产生僵硬、不可变形的红细胞,红细胞僵硬在镰状细胞中尤其成问题。
细胞疾病 (SCD),一种使人衰弱的遗传性血液疾病,美国估计有 100,000 人患有此病。
全球范围内有数百万人患有 SCD,该领域经历了新型 SCD 疗法的爆炸式增长,
旨在针对过去五年中众多基于基因的特定个体异常。
旨在治愈 SCD 的疗法正在进行临床试验,SCD 疗法的这一显着转变产生了对 SCD 的需求。
评估红细胞健康和质量的诊断和分析工具我们需要红细胞功能的生物标志物。
作为临床试验的终点,协助最佳药物选择和个体化监测,
并确定基于基因的治疗是否使红细胞正常化,必须对红细胞的许多方面进行检测。
评估,但一个关键特征是可变形性,缺乏足够灵敏的坚固、廉价的设备。
捕获少量不易变形的红细胞,能够继续溶血,损害血管,
并导致器官损伤和早期死亡,因此我们必须审查治疗方法使病情正常化的能力。
在这里,我们建议开发和转化微流体阻抗红细胞。
用于功能性测量红细胞变形性的测定 (MIRCA),报告为仿生物质的闭塞指数 (OI)
我们提出了一种创新方法和一种新颖的合作。
我们将通过以下步骤来做到这一点:
1. 我们将实现红细胞 OI 分析的 MIRCA 测量的仪器化和分析验证。
验证将在 PI 实验室(CWRU Umut Gurkan 博士)和 Co-I 血液学中进行
实验室(Vivien Sheehan 博士,埃默里大学)证明普遍性并允许利益相关者反馈和设计
修改。
2. 我们将通过评估成骨不全与临床并发症之间的关联来对 MIRCA 进行临床验证
SCD 疾病严重程度的传统实验室测量。
3. 我们将通过展示其预后价值,将优化后的 MIRCA 的使用扩展到临床空间
对经历临床并发症和转变的 SCD 患者进行纵向评估
治疗。
利用我们生物医学工程师和受过血液学训练的医师科学家之间独特的合作,
我们将在临床试验和患者护理中优化、验证 MIRCA 技术并实现其临床采用
适用于美国和世界各地的 SCD 患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Umut A. Gurkan其他文献
Real-time imaging of nanobubble ultrasound contrast agent flow, extravasation, and diffusion through an extracellular matrix using a microfluidic model.
使用微流体模型对纳米气泡超声造影剂在细胞外基质中的流动、外渗和扩散进行实时成像。
- DOI:
10.1039/d3lc00514c - 发表时间:
2023-07-10 - 期刊:
- 影响因子:6.1
- 作者:
Michaela B. Cooley;William J. Wulftange;Dana Wegierak;Utku Goreke;E. Abenojar;Umut A. Gurkan;A. Exner - 通讯作者:
A. Exner
Emerging point-of-care technologies for sickle cell disease screening and monitoring
用于镰状细胞病筛查和监测的新兴护理点技术
- DOI:
10.1080/17434440.2016.1254038 - 发表时间:
2016-11-22 - 期刊:
- 影响因子:3.1
- 作者:
Yunus Alapan;A. Fraiwan;E. Kucukal;M. N. Hasan;Ryan Ung;Myeongseop Kim;I. Odame;J. Little;Umut A. Gurkan - 通讯作者:
Umut A. Gurkan
Red blood cell adhesion to ICAM-1 is mediated by fibrinogen and is associated with right-to-left shunts in sickle cell disease.
红细胞与 ICAM-1 的粘附由纤维蛋白原介导,并与镰状细胞病中的右向左分流有关。
- DOI:
10.1182/bloodadvances.2020001656 - 发表时间:
2020-08-11 - 期刊:
- 影响因子:7.5
- 作者:
E. Kucukal;Yuncheng Man;Erina Quinn;Neil Tewari;R. An;A. Ilich;N. Key;J. Little;Umut A. Gurkan - 通讯作者:
Umut A. Gurkan
Nanoliter droplet vitrification for oocyte cryopreservation ReseaRch
纳升液滴玻璃化冷冻卵母细胞研究
- DOI:
10.1016/j.fertnstert.2010.11.046 - 发表时间:
2012 - 期刊:
- 影响因子:6.7
- 作者:
Xiaohui Zhang;Imran Khimji;L. Shao;H. Safaee;Khanjan Desai;H. O. Keleş;Umut A. Gurkan;Emre Kayaalp;Aida Nureddin;R. Anchan;R. Maas;U. Demirci - 通讯作者:
U. Demirci
A PMMA microfluidic dielectric sensor for blood coagulation monitoring at the point-of-care
用于护理点凝血监测的 PMMA 微流体介电传感器
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Debnath Maji;M. Suster;E. Kucukal;Umut A. Gurkan;Evi X. Stavrou;P. Mohseni - 通讯作者:
P. Mohseni
Umut A. Gurkan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Umut A. Gurkan', 18)}}的其他基金
Microfluidic intact cell platform: A novel tool for oral cancer detection
微流控完整细胞平台:口腔癌检测的新工具
- 批准号:
10043470 - 财政年份:2020
- 资助金额:
$ 66.32万 - 项目类别:
Microfluidic intact cell platform: A novel tool for oral cancer detection
微流控完整细胞平台:口腔癌检测的新工具
- 批准号:
10043470 - 财政年份:2020
- 资助金额:
$ 66.32万 - 项目类别:
Clinical Microfluidic Assessment of Red Blood Cell Adhesion, Deformability, Cellular Hemoglobin Distribution, Cellular Density, and Blood Rheology for Curative Therapies in Sickle Cell Disease
镰状细胞病治疗中红细胞粘附、变形能力、细胞血红蛋白分布、细胞密度和血液流变学的临床微流体评估
- 批准号:
10329080 - 财政年份:2019
- 资助金额:
$ 66.32万 - 项目类别:
Standardized Monitoring of Cellular Adhesion to Improve Clinical Care in Sickle Cell Disease
细胞粘附的标准化监测可改善镰状细胞病的临床护理
- 批准号:
9975877 - 财政年份:2016
- 资助金额:
$ 66.32万 - 项目类别:
Standardized Monitoring of Cellular Adhesion to Improve Clinical Care in Sickle Cell Disease
细胞粘附的标准化监测可改善镰状细胞病的临床护理
- 批准号:
9279250 - 财政年份:2016
- 资助金额:
$ 66.32万 - 项目类别:
相似海外基金
A micromachining fluidic cantilever for single cell advanced patch clamping and cellular characterization using atomic force microscopy
使用原子力显微镜进行单细胞先进膜片钳和细胞表征的微加工流体悬臂
- 批准号:
10615901 - 财政年份:2022
- 资助金额:
$ 66.32万 - 项目类别:
A micromachining fluidic cantilever for single cell advanced patch clamping and cellular characterization using atomic force microscopy
使用原子力显微镜进行单细胞先进膜片钳和细胞表征的微加工流体悬臂
- 批准号:
10478331 - 财政年份:2022
- 资助金额:
$ 66.32万 - 项目类别:
Targeting the Genus Leishmania with Small Molecules
用小分子靶向利什曼原虫属
- 批准号:
10579191 - 财政年份:2021
- 资助金额:
$ 66.32万 - 项目类别:
Targeting the Genus Leishmania with Small Molecules
用小分子靶向利什曼原虫属
- 批准号:
10377374 - 财政年份:2021
- 资助金额:
$ 66.32万 - 项目类别: