A micromachining fluidic cantilever for single cell advanced patch clamping and cellular characterization using atomic force microscopy
使用原子力显微镜进行单细胞先进膜片钳和细胞表征的微加工流体悬臂
基本信息
- 批准号:10615901
- 负责人:
- 金额:$ 80.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AcademiaAction PotentialsAddressAdhesivesAffectAreaAtomic Force MicroscopyBiologicalBiological AssayBiological MarkersBiological SciencesBiologyBiomedical ResearchCardiac MyocytesCardiologyCardiotoxicityCell TherapyCell surfaceCellsClinicalConsumptionDevelopmentDevicesDiseaseDoctor of PhilosophyDrug EvaluationElasticityElectrodesElectronicsElectrophysiology (science)EndocrinologyEventFailureFeedbackFunctional disorderGeneticHeart DiseasesHourHumanIn VitroIndividualIndustryIon ChannelIonsLaboratoriesLaboratory TechniciansLearningLibrariesMarketingMasksMeasurementMeasuresMembrane PotentialsMicrobiologyMicroelectrodesModalityMuscle FibersNanostructuresNanotechnologyNeurologyNeuronsNeurosciencesPatientsPerformancePharmaceutical PreparationsPharmaceutical SolutionsPharmacologic SubstancePhenotypePopulationPropertyPublishingPumpReactionRecordsResearchResearch PersonnelResolutionSafetyScanning Probe MicroscopesScientistSmall Business Innovation Research GrantSpectrum AnalysisStructure of beta Cell of isletSystemTechniquesTechnologyTestingTimeTissue SampleToxic effectTrainingassessment applicationcantileverconsumer demanddesigndrug candidatedrug discoveryelastographyelectrical propertyheart cellheart functionimprovedinduced pluripotent stem cellmedical schoolsmeternanomachinenovel therapeuticspatch clamppersonalized medicinepharmacologicresponsesealsensortoolvalidation studiesviscoelasticity
项目摘要
Single patch clamping is used to multiple areas of biology such as cardiology (cardiomyocytes),
neurology/neuroscience (neurons), endocrinology (pancreatic beta cells), myology (muscle fibers), and even
microbiology (bacterial ion channels). Applied Nanostructures (AppNano) in partnership with the Icahn School
of Medicine is bringing to the market a unique solution addressing a major market need in electrophysiology
measurements. With its advanced features and unmatched resolution, the device will enable researchers in
academia and in the highly competitive life sciences industry to answer important scientific questions and
develop and test new drugs fueling the discovery of new pharmaceutical solutions. As a result, these companies
will be better equipped to keep up with the ever-increasing consumer demand for pharmaceutical products. In
this SBIR we are developing a semi-automated system based on an micro-electromechanical systems (MEMS)
sensor pipette used with atomic force microscopes (AFM) that can measure, simultaneously and directly,
electrophysiological properties (such as action potentials (AP)), contractile forces on single cardiomyocytes
(CM), and single cell elasticity. This system offers high content analysis (HCA) at a single cell level. The system
enables a significant increase in performance and a dramatic decrease in time to complete a measurement. With
times <5 min compared to conventional patch clamping (2-4 hours) achieved by leveraging micromachining and
advanced atomic force microscopy (force spectroscopy). The proposed system will simplify patch clamping
measurements and require minimal training. This system will make it reasonably easy for any laboratory
technician to conduct these measurements, in contrast to conventional patch clamping, which has a steep
learning curve and requires a PhD-level scientist. In addition to action potential and contraction force, we can
also evaluate the viscoelastic and adhesive properties of the cells. Our device will be capable of addressing a
critical bottleneck in drug discovery that arises during the final characterization of drug candidates. The device
can detect single cell changes that would otherwise be masked when averaged over large populations, offering
the advantage of measuring rare events, such as toxicity indicators that affect the beating phenotype or action
potential (AP) of subpopulations of CMs. This tool finds applications in: drug evaluation/discovery, in the study
of Cardiomyocytes (CM) derived from human induced pluripotent stem cells (CM-iPSCs), as a general patch-
clamping tool, and in clinical settings. In the setting of personalized medicine, for example, the tool allows for
interrogation of enough iPSC-CM (generated from a patient’s tissue sample for instance) to produce statistically
meaningful results within several minutes that would indicate an individual’s reaction to a specific drug.
Additionally this tool finds application in the study to other types of cardiotoxic effects and in other fields of
biomedical research that use electrophysiology (patch clamping), such as neuroscience/neurology and
endocrinology.
单膜片钳用于生物学的多个领域,例如心脏病学(心肌细胞)、
神经学/神经科学(神经元)、内分泌学(胰腺β细胞)、肌肉学(肌纤维),甚至
微生物学(细菌离子通道)。应用纳米结构(AppNano)与伊坎学院合作。
of Medicine 正在向市场推出一种独特的解决方案,满足电生理学的主要市场需求
凭借其先进的功能和无与伦比的分辨率,该设备将使研究人员能够进行测量。
学术界和竞争激烈的生命科学行业回答重要的科学问题和
因此,这些公司开发和测试新的燃料药物,发现新的药物解决方案。
将更好地满足消费者对药品不断增长的需求。
在此 SBIR 中,我们正在开发一种基于微机电系统 (MEMS) 的半自动化系统
传感器移液器与原子力显微镜(AFM)一起使用,可以同时直接测量,
电生理特性(如动作电位 (AP))、单个心肌细胞的收缩力
(CM) 和单细胞弹性 该系统提供单细胞水平的高内涵分析 (HCA)。
可以显着提高性能并显着缩短完成测量的时间。
与通过利用微机械加工实现的传统膜片钳(2-4小时)相比,时间<5分钟
先进的原子力显微镜(力谱)将简化膜片钳。
该系统将使任何实验室都相当容易地进行测量。
技术人员进行这些测量,与传统的膜片钳相比,其具有陡峭的
学习曲线,需要博士级别的科学家 除了动作电位和收缩力之外,我们还可以。
还可以评估细胞的粘弹性和粘合特性。
药物发现的关键瓶颈是在候选药物的最终表征过程中出现的。
可以检测单细胞的变化,否则这些变化在对大量群体进行平均时会被掩盖,从而提供
测量罕见事件的优势,例如影响跳动表型或行为的毒性指标
CM 亚群的潜力 (AP) 该工具可应用于:药物评估/发现、研究中。
源自人类诱导多能干细胞(CM-iPSC)的心肌细胞(CM),作为通用补丁-
例如,在临床环境中,该工具允许进行个性化医疗。
询问足够的 iPSC-CM(例如从患者的组织样本中生成)以有效生产
几分钟内即可得出有意义的结果,表明个人对特定药物的反应。
此外,该工具还可用于其他类型的心脏毒性作用的研究以及其他领域
使用电生理学(膜片钳)的生物医学研究,例如神经科学/神经学和
内分泌学。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Single-Cell Analysis of Contractile Forces in iPSC-Derived Cardiomyocytes: Paving the Way for Precision Medicine in Cardiovascular Disease.
iPSC 来源的心肌细胞收缩力的单细胞分析:为心血管疾病的精准医学铺平道路。
- DOI:
- 发表时间:2023-08-30
- 期刊:
- 影响因子:5.6
- 作者:Turnbull, Irene C;Bajpai, Apratim;Jankowski, Katherine B;Gaitas, Angelo
- 通讯作者:Gaitas, Angelo
Selective area multilayer graphene synthesis using resistive nanoheater probe.
使用电阻纳米加热器探针选择性区域多层石墨烯合成。
- DOI:
- 发表时间:2023-05-17
- 期刊:
- 影响因子:4.6
- 作者:Torres, Ingrid;Aghaei, Sadegh Mehdi;Pala, Nezih;Gaitas, Angelo
- 通讯作者:Gaitas, Angelo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ami Chand其他文献
Ami Chand的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ami Chand', 18)}}的其他基金
A micromachining fluidic cantilever for single cell advanced patch clamping and cellular characterization using atomic force microscopy
使用原子力显微镜进行单细胞先进膜片钳和细胞表征的微加工流体悬臂
- 批准号:
10478331 - 财政年份:2022
- 资助金额:
$ 80.52万 - 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
晚钠电流通过CaMK-II调节跨壁胞内钙离子分布在心肌缺血再灌注心律失常中的作用及机制研究
- 批准号:81900300
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
相似海外基金
A micromachining fluidic cantilever for single cell advanced patch clamping and cellular characterization using atomic force microscopy
使用原子力显微镜进行单细胞先进膜片钳和细胞表征的微加工流体悬臂
- 批准号:
10478331 - 财政年份:2022
- 资助金额:
$ 80.52万 - 项目类别:
Fiber-Delivered Programmable Supercontinuum Laser Adaptive to EvolvingNeurophotonic Research
光纤传输的可编程超连续谱激光器适应不断发展的神经光子学研究
- 批准号:
9915977 - 财政年份:2019
- 资助金额:
$ 80.52万 - 项目类别:
Novel nanotechnology-based optical stimulation platform for predictive cardiotoxicity assessment
基于新型纳米技术的光刺激平台,用于预测心脏毒性评估
- 批准号:
9347619 - 财政年份:2017
- 资助金额:
$ 80.52万 - 项目类别:
Identification and Regulation of the Myometrial Leak Current
子宫肌层漏电流的识别和调节
- 批准号:
9111676 - 财政年份:2014
- 资助金额:
$ 80.52万 - 项目类别: