Data-Driven Sleep Biomarkers of Brain Health, Heart Health, and Mortality
数据驱动的大脑健康、心脏健康和死亡率的睡眠生物标志物
基本信息
- 批准号:10684096
- 负责人:
- 金额:$ 218.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAgeAlgorithmsApneaArousalArtificial IntelligenceAtrial FibrillationBiologicalBiological MarkersBrainBrain DiseasesCardiac healthCardiopulmonaryCardiovascular systemChildhoodClinicalClinical DataCodeCollaborationsComplementComputational ScienceComputerized Medical RecordCongestive Heart FailureCoronary ArteriosclerosisCouplingDataData ScienceData SetDementiaDetectionDevelopmentDiagnosisDiagnosticElectroencephalographyElectronic Health RecordEnsureEpidemiologyEthnic OriginEthnic PopulationFutureGoalsGraphHealthHeart DiseasesHumanHypertensionHypoxiaImprove AccessInstitutionIntracranial HemorrhagesIschemic StrokeLibrariesLinkLongevityMachine LearningManualsMeasurableMeasuresMedicalMedicineMorbidity - disease rateMotorMyocardial InfarctionOutcomePatientsPerformancePeriodicalsPersonsPhenotypePhysiologyPolysomnographyPositioning AttributePublishingREM SleepRaceReportingResearchSamplingScienceSignal TransductionSleepSleep Apnea SyndromesSleep FragmentationsSleep StagesSourceStagingStrokeTimeTrainingUnderserved PopulationVisualWorkartificial intelligence algorithmbrain healthcardiovascular healthcohortdata portaldeep learningdiverse dataexperienceindexinglimb movementmachine learning methodmortalitynovelopen dataopen sourcepediatric patientspopulation basedprimary outcomeracial populationrespiratorysecondary outcomesexsleep physiologysocialtool
项目摘要
Abstract: Data-Driven Sleep Biomarkers of Brain Health, Heart Health, and Mortality
Sleep state signals encode critical biological information about brain and cardiovascular health. However,
present approaches to polysomnography data (“sleep studies”) discard most of the collected information, instead
providing, using visual analysis and rules from the 1960s, relatively unsophisticated metrics (e.g., 30-second
sleep stages, apnea-hypopnea index). Visual scoring is also limited by interscorer inconsistencies. Recent
advances in computational science and Machine Learning (ML) / Artificial Intelligence (AI) open the way for 1)
standard scoring with unparalleled precision and consistency; 2) new data-driven, quantitative measures. There
is a critical unmet need for new tools, algorithms and datasets that leverage recent advances in data science to
develop robust sleep-based biomarkers of brain and cardiovascular health.
We propose to create a Complete AI Sleep Report (CAISR) algorithm for all standard sleep measures, and a
progressively accumulating library of novel analytics. We are ideally positioned to close this gap. We will
assemble between our six collaborating institutions sleep data from >200K patients (35,000 already assembled),
we have experience curating large clinical physiology and electronic medical records data for research; we have
progress already underway with building a scalable public data sharing portal; we have deep expertise in basic
and translational sleep science; and we have an established record of successfully developing and validating
novel deep learning tools and algorithms to analyze sleep data.
Our long-term goal is to increase the value of sleep physiology data by replacing manual analysis by open-
source data-driven AI approaches. Our central hypothesis is that sleep signals carry measurable latent
information about mortality and brain and heart health. Our specific aims are: 1) Create an online public portal
with de-identified polysomnograms (PSG) and cross-sectional and longitudinal electronic health records (EHR)
data for >200K adult and pediatric patients; 2) Implement CAISR and validated that it generalizes across age,
sex, and race. CAISR will also be externally validated on >13,000 PSGs from public research cohorts; 3) Develop
AI algorithms that a) differentiate patients with vs. without existing brain and heart disease; b) predict primary
outcomes of all cause and cardiovascular mortality, and secondary outcomes of heart disease (coronary artery
disease, myocardial infarction, congestive heart failure, atrial fibrillation, hypertension); and brain disease
(dementia, stroke, intracranial hemorrhage).
Completing these aims will lead to these expected outcomes: (1) sleep data across the lifespan, (2) sleep scoring
AI algorithms validated across age, sex, and ethnicity; (3) predictors of mortality and brain and heart health.
These outcomes will lead to new testable hypotheses, make sleep diagnostics more accessible to socially and
biologically underserved groups, and stimulate progress in data-driven sleep research.
摘要:数据驱动的大脑健康、心脏健康和死亡率的睡眠生物标志物
睡眠状态信号编码有关大脑和心血管健康的关键生物信息。
目前的多导睡眠图数据方法(“睡眠研究”)丢弃了大部分收集到的信息,而是
使用 20 世纪 60 年代的视觉分析和规则提供相对简单的指标(例如 30 秒
睡眠阶段、呼吸暂停-呼吸不足指数)也受到近期评分者不一致的限制。
计算科学和机器学习 (ML)/人工智能 (AI) 的进步为 1) 开辟了道路
具有无与伦比的精确性和一致性的标准评分;2) 新的数据驱动的定量测量。
对新工具、算法和数据集的关键未满足需求,这些工具、算法和数据集利用数据科学的最新进展来
开发基于睡眠的大脑和心血管健康的强大生物标志物。
我们建议为所有标准睡眠测量创建一个完整的人工智能睡眠报告(CAISR)算法,以及一个
我们正在逐步积累新颖的分析库,我们将缩小这一差距。
我们的六个合作机构收集了超过 20 万患者的睡眠数据(已收集了 35,000 名患者),
我们拥有整理大型临床生理学和电子病历数据以供研究的经验;
构建可扩展的公共数据共享门户已经取得进展;我们在基础知识方面拥有深厚的专业知识;
我们拥有成功开发和验证睡眠科学的良好记录;
用于分析睡眠数据的新颖深度学习工具和算法。
我们的长期目标是通过开放式分析代替手动分析来提高睡眠生理学数据的价值。
我们的中心假设是,睡眠信号携带可测量的潜在信号。
有关死亡率以及大脑和心脏健康的信息我们的具体目标是: 1) 创建一个在线公共门户。
具有去识别化的多导睡眠图 (PSG) 以及横截面和纵向电子健康记录 (EHR)
> 20 万成人和儿童患者的数据;2) 实施 CAISR 并验证其适用于不同年龄的患者,
CAISR 还将在来自公共研究队列的超过 13,000 个 PSG 上进行外部验证;
人工智能算法 a) 区分患有和不患有脑部和心脏病的患者 b) 预测原发性疾病;
全因死亡率和心血管死亡率的结果,以及心脏病的次要结果(冠状动脉
疾病、心肌梗塞、充血性心力衰竭、心房颤动、高血压)和脑部疾病;
(痴呆、中风、颅内出血)。
完成这些目标将带来以下预期结果:(1) 整个生命周期的睡眠数据,(2) 睡眠评分
跨年龄、性别和种族验证的人工智能算法;(3) 死亡率以及大脑和心脏健康的预测因素。
这些结果将带来新的可检验的假设,使睡眠诊断更容易被社会和公众所接受。
生物学服务不足的群体,并刺激数据驱动的睡眠研究的进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Brandon Westover其他文献
Michael Brandon Westover的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Brandon Westover', 18)}}的其他基金
Big Data and Deep Learning for the Interictal-Ictal-Injury Contiuum
发作间期-发作期-损伤连续体的大数据和深度学习
- 批准号:
10761842 - 财政年份:2023
- 资助金额:
$ 218.87万 - 项目类别:
Data-Driven Sleep Biomarkers of Brain Health, Heart Health, and Mortality
数据驱动的大脑健康、心脏健康和死亡率的睡眠生物标志物
- 批准号:
10758996 - 财政年份:2022
- 资助金额:
$ 218.87万 - 项目类别:
Big Data and Deep Learning for the Interictal-Ictal-Injury Continuum
发作间期-发作期-损伤连续体的大数据和深度学习
- 批准号:
10398908 - 财政年份:2018
- 资助金额:
$ 218.87万 - 项目类别:
Investigation of Sleep in the Intensive Care Unit (ICU-SLEEP)
重症监护病房睡眠调查(ICU-SLEEP)
- 批准号:
10372017 - 财政年份:2018
- 资助金额:
$ 218.87万 - 项目类别:
Big Data and Deep Learning for the Interictal-Ictal-Injury Continuum
发作间期-发作期-损伤连续体的大数据和深度学习
- 批准号:
9769180 - 财政年份:2018
- 资助金额:
$ 218.87万 - 项目类别:
Quantitative Monitoring and Control of Sedation and Pain in the ICU Environment
ICU 环境中镇静和疼痛的定量监测和控制
- 批准号:
8908065 - 财政年份:2014
- 资助金额:
$ 218.87万 - 项目类别:
Quantitative Monitoring and Control of Sedation and Pain in the ICU Environment
ICU 环境中镇静和疼痛的定量监测和控制
- 批准号:
9313343 - 财政年份:2014
- 资助金额:
$ 218.87万 - 项目类别:
Quantitative Monitoring and Control of Sedation and Pain in the ICU Environment
ICU 环境中镇静和疼痛的定量监测和控制
- 批准号:
8616877 - 财政年份:2014
- 资助金额:
$ 218.87万 - 项目类别:
相似国自然基金
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
- 批准号:
10748859 - 财政年份:2024
- 资助金额:
$ 218.87万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 218.87万 - 项目类别:
The neural underpinnings of speech and nonspeech auditory processing in autism: Implications for language
自闭症患者言语和非言语听觉处理的神经基础:对语言的影响
- 批准号:
10827051 - 财政年份:2024
- 资助金额:
$ 218.87万 - 项目类别:
Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
- 批准号:
10824044 - 财政年份:2024
- 资助金额:
$ 218.87万 - 项目类别: