CFI Pathogen Inactivation Technology
CFI病原体灭活技术
基本信息
- 批准号:7830669
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-30 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:Acquired Immunodeficiency SyndromeAmericanAnimal VirusesAntibodiesApplications GrantsBabesiaBacteriaBiologicalBioterrorismBloodBlood donor screeningChemicalsClinical TrialsCollaborationsCommunity HealthcareConduct Clinical TrialsCyclic GMPDeforestationDepartment of DefenseDetergentsDevelopmentDiseaseDisease OutbreaksEnglandEnsureEnzyme ImmunoassayEnzymesEpidemicEscherichia coliEukaryotaEuropeEvaluationExcisionExhibitsFactor VIIIFibrinogenGasesGrantHIVHabitatsHeatingHumanHuman Parvovirus B19IndividualInfectionInfectious AgentInfluenzaInfluenza A Virus, H5N1 SubtypeInstitutesInternationalLaboratoriesLeadLiquid substanceLondonManufacturer NameMethodsMexicanModelingMorbidity - disease rateMutationNational Heart, Lung, and Blood InstituteOperative Surgical ProceduresParasitesPenetrationPharmacologic SubstancePharmacologyPhasePlasmaPlasma ProteinsPlasmodiumPoliomyelitisProcessProkaryotic CellsPropertyProteinsRecombinantsRecoveryRed CrossResearchResidual stateRiskRuptureSaccharomyces cerevisiaeSafetyScreening procedureSevere Acute Respiratory SyndromeSmall Business Innovation Research GrantSmallpoxSolventsStagingTechniquesTechnologyTestingTherapeutic Monoclonal AntibodiesThickTransfusionTransgenic OrganismsTravelUnited States National Institutes of HealthUrbanizationVaccinesVascular blood supplyVesicular stomatitis Indiana virusViralViral AntigensVirusVirus InactivationWest Nile virusWorkauthoritybaseclinical toxicologydesigndesign and constructionhealthy volunteerirradiationmeetingsmicroorganismmortalitypandemic diseaseparticlepasteurizationpathogenpathogenic bacteriapre-clinicalpreclinical studyprogramsprototypepublic health relevanceresearch and developmentresponseserological markerswine fluultraviolet irradiation
项目摘要
DESCRIPTION (provided by applicant): This project entitled "CFI Pathogen Inactivation Technology," is in response to the challenge of developing Enabling Technologies to "Ensure a safe and adequate blood supply through the development of new processing technologies" Topic 06-HL-106, p. 94 of the National Institutes of Health American Recovery and Reinvestment Act of 2009 Challenge Grant Omnibus Solicitation RFA-OD-09-003. The worldwide AIDS epidemic, the periodic emergence of Ebola and SARS, and the recent outbreaks of potentially pandemic strains of influenza such as H5N1 have highlighted a persistent concern in the healthcare community -- the need for effective pathogen inactivation and removal techniques for human blood plasma and plasma-derived products. There are also a number of emerging viruses such as West Nile and the breaking Mexican swine flu, and a number of potential bioterrorism pathogens such as smallpox that are of concern to the safety of the human plasma supply chain. In addition to viruses, bacteria and parasites such as Babesia spp. and Plasmodium spp. are major threats of spreading diseases through transfusion. The causes of the more rapid emergence and spread of these "killer" viruses and pathogens are not entirely known, but are thought to be caused by some combination of deforestation with urbanization of wild virus habitats, evolutionary mutations and rapid global travel. Annually, an estimated 3.8 million Americans are transfused with 28.2 million blood components derived from 12.8 million units of blood donated by apparently healthy volunteers. A rigorous scrutiny of blood donors and the screening of donated blood for various serological markers have significantly reduced the mortality and morbidity due to transfusion-associated infectious agents. Some enzyme immunoassays used for routine screening may detect viral antigens or antibodies, but not the infectious agents themselves. Thus, there could be an asymptomatic window period of infectivity responsible for a residual risk of post-transfusion infection. Current approaches such as pasteurization; solvent-detergent; UV irradiation; and chemical and photochemical inactivation not always effective against a wide spectrum of pathogens, are sometimes encumbered by process-specific deficiencies, and often result in denaturation of the biologics that they are designed to protect. We plan to develop a physical pathogen inactivation process for non-enveloped and enveloped viruses as well as pathogenic bacteria and parasites in human plasma and plasma protein products. The process utilizes supercritical and near-critical fluids (SuperFluids(tm) or SFS). SuperFluids(tm) are normally gases which, when compressed, exhibit enhanced solvation, penetration and expansion properties. These gases are used to permeate and inflate the virus and pathogen particles. The overfilled particles are then decompressed and, as a result of rapid phase conversion, rupture at their weakest points. Research to date indicates that the SuperFluids(tm) CFI (critical fluid inactivation) process inactivates both enveloped viruses such as MuLV, VSV, TGE, BDVD, Sindbis and HIV and nonenveloped viruses such as Polio, Adeno, Reo, Parvo and EMC while preserving biological activity of the treated product. In a research collaboration with the National Institute of Biological Standards and Control (NIBSC), London, England, we demonstrated that SuperFluids(tm) CFI can inactivate more than 4 logs of human Parvovirus B19 (one of the smallest and toughest viruses) in human plasma in a two-stage CFI unit in less than 20 seconds. We have also demonstrated that SFS can disrupt and inactivate microorganisms such as E. coli, and thick-walled prokaryotes such as B. subtilis and tough eukaryotes such as S. cerevisiae at viral inactivation SFS conditions. CFI can be used with conventional viral reduction methods such as SD and nanofiltration as an orthogonal method of pathogen clearance. Our specific plans for this challenge grant are to: (1) design and construct laboratory-scale prototypes to conduct evaluation and trade-off studies that will lead to the selection of a commercial-scale SFS-CFI design to achieve > 6 logs of inactivation levels of nonenveloped and enveloped viruses with >90% retention of protein (e.g., Factor VIII) integrity; (2) test prototypical and emerging viruses and bacteria in human plasma in extant SFS-CFI units and in laboratory-scale prototypes in order to establish universal operation conditions as well as
the universality of the SFS-CFI process for enveloped and nonenveloped viruses and pathogenic bacteria; (3) evaluate the potential of applying SFS-CFI enabling technology to human plasma proteins such as fibrinogen and other components; and (4) evaluate compatibility of SFS-CFI with other enabling pathogen inactivation/ reduction technologies such as nanofiltration to define orthogonal effective approaches to meet manufacturers' specifications and FDA requirements. Subsequently, with a pharmaceutical/biologics partner such as Baxter International and/or an institutional partner such as the American Red Cross, DOD or NHLBI, we plan to conduct pre-clinical studies, file an IND with the FDA and conduct clinical trials on CFI-treated plasma. A generally-applicable physical technology for inactivating viruses and emerging pathogens with high retention of biological activity will help ensure a blood supply that is safe from emerging and unknown pathogens as well as bioterrorism threats. In addition to human plasma and human plasma proteins, the developed technology will also be applicable to recombinant therapeutics, monoclonal antibodies, transgenics and vaccines.
PUBLIC HEALTH RELEVANCE: There are a number of emerging viruses such as West Nile, Ebola, SARS, potential pandemic strains of influenza (H5N1), the breaking Mexican swine flu, bacteria, parasites and a number of potential bioterrorism pathogens such as smallpox that are of concern to the safety of the human plasma supply. Current approaches are not always effective against a wide spectrum of human and animal viruses, are sometimes encumbered by process-specific deficiencies, and often result in denaturation of the biologicals that they are designed to protect. CFI pathogen inactivation technology gives pathogens the "bends," inactivating them without damaging proteins and enzymes in medically important transfusion fluids such as human plasma. This purely physical technique does not involve the use of heat, chemicals and/or irradiation, each of which has significant drawbacks in the viral inactivation of human plasma. As such, while CFI is capable of inactivating wide classes of viruses, bacteria and parasites, CFI has negligible negative impact on biological integrity and potency of the treated fluids. We plan to develop this technology as an orthogonal virus inactivation technology to techniques such as solvent-detergent (SD) that is not effective against non-enveloped viruses and passive virus removal techniques such as nanofiltration which does not render viruses inactive. This orthogonal approach is consistent with the regulatory authorities in Europe and the US that require a minimum of two pathogen inactivation technologies, which work by different mechanisms of action. The potential impact of a generally-applicable physical technology for inactivating viruses and emerging pathogens with high retention of biological activity will be very significant. Such a technology, especially when used with conventional virus inactivation or removal methods such as SD or nanofiltration, will help ensure a blood supply that is safe from emerging and unknown pathogens and bioterrorism threats. In addition to human plasma and human plasma proteins such as fibrinogen, the developed technology will also be applicable to recombinant therapeutics, monoclonal antibodies, transgenics and vaccines.
描述(由申请人提供):该项目名为“CFI 病原体灭活技术”,旨在应对开发使能技术“通过开发新处理技术确保安全和充足的血液供应”的挑战,主题 06-HL-106 ,p。美国国立卫生研究院 2009 年美国复苏和再投资法案第 94 条挑战拨款综合征集 RFA-OD-09-003。全球范围内的艾滋病流行、埃博拉和非典的周期性出现,以及最近爆发的 H5N1 等潜在大流行性流感病毒株,都凸显了医疗保健界的持续关注——需要有效的人类血浆病原体灭活和去除技术和血浆衍生产品。还有一些新出现的病毒,如西尼罗河病毒和爆发的墨西哥猪流感,以及一些潜在的生物恐怖主义病原体,如天花,这些都与人类血浆供应链的安全有关。除了病毒之外,还有细菌和寄生虫,例如巴贝虫属。和疟原虫属。是通过输血传播疾病的主要威胁。这些“杀手”病毒和病原体更快出现和传播的原因尚不完全清楚,但被认为是由森林砍伐、野生病毒栖息地城市化、进化突变和快速全球旅行共同造成的。每年,估计有 380 万美国人接受 2820 万种血液成分的输注,这些血液成分来自表面上健康的志愿者捐献的 1280 万单位血液。对献血者的严格审查以及对献血者血液中各种血清学标志物的筛查已显着降低了输血相关传染源引起的死亡率和发病率。一些用于常规筛查的酶免疫测定可以检测病毒抗原或抗体,但不能检测传染原本身。因此,可能存在一个无症状的感染窗口期,导致输血后感染的残留风险。目前的方法,例如巴氏灭菌法;溶剂清洁剂;紫外线照射;化学和光化学灭活并不总是对多种病原体有效,有时会受到工艺特定缺陷的阻碍,并且常常导致其旨在保护的生物制剂变性。我们计划开发一种物理病原体灭活工艺,用于人血浆和血浆蛋白产品中的无包膜和包膜病毒以及病原菌和寄生虫。该工艺采用超临界和近临界流体(SuperFluids(tm) 或 SFS)。 SuperFluids(tm) 通常是气体,在压缩时会表现出增强的溶剂化、渗透和膨胀特性。这些气体用于渗透和膨胀病毒和病原体颗粒。然后,过度填充的颗粒被减压,并且由于快速相转变,在其最薄弱处破裂。迄今为止的研究表明,SuperFluids(tm) CFI(临界流体灭活)过程可灭活 MuLV、VSV、TGE、BDVD、Sindbis 和 HIV 等包膜病毒以及 Polio、Adeno、Reo、Parvo 和 EMC 等非包膜病毒,同时保留处理后的产品的生物活性。在与英国伦敦国家生物标准与控制研究所 (NIBSC) 的一项研究合作中,我们证明 SuperFluids(tm) CFI 可以灭活人体中 4 个以上的人类细小病毒 B19(最小、最顽固的病毒之一)两级 CFI 装置中的等离子体在 20 秒内完成。我们还证明,SFS 可以在病毒灭活 SFS 条件下破坏和灭活大肠杆菌等微生物、枯草芽孢杆菌等厚壁原核生物和酿酒酵母等坚韧真核生物。 CFI 可以与传统的病毒减少方法(例如 SD 和纳滤)一起使用,作为病原体清除的正交方法。我们针对这项挑战资助的具体计划是:(1) 设计和构建实验室规模的原型,以进行评估和权衡研究,从而选择商业规模的 SFS-CFI 设计,以实现 > 6 个失活对数无包膜和有包膜病毒的水平,蛋白质(例如因子 VIII)完整性保留 > 90%; (2) 在现有的 SFS-CFI 装置和实验室规模的原型中测试人血浆中的原型和新出现的病毒和细菌,以建立通用的操作条件和
SFS-CFI 过程对于包膜和非包膜病毒以及病原菌的通用性; (3)评估将SFS-CFI使能技术应用于人血浆蛋白(如纤维蛋白原和其他成分)的潜力; (4) 评估 SFS-CFI 与其他病原体灭活/减少技术(例如纳滤)的兼容性,以确定正交有效方法,以满足制造商的规格和 FDA 要求。随后,我们计划与 Baxter International 等制药/生物制剂合作伙伴和/或美国红十字会、DOD 或 NHLBI 等机构合作伙伴一起进行临床前研究,向 FDA 提交 IND 申请,并针对 CFI 进行临床试验-处理过的血浆。一种普遍适用的物理技术,用于灭活病毒和新出现的病原体,并高度保留生物活性,将有助于确保血液供应安全,免受新出现和未知病原体以及生物恐怖主义威胁。除了人血浆和人血浆蛋白外,所开发的技术还将适用于重组疗法、单克隆抗体、转基因和疫苗。
公共卫生相关性:有许多新出现的病毒,如西尼罗河病毒、埃博拉病毒、SARS、潜在的大流行性流感病毒株 (H5N1)、爆发的墨西哥猪流感、细菌、寄生虫和许多潜在的生物恐怖主义病原体,如天花,人类血浆供应的安全性值得关注。目前的方法并不总是能有效对抗多种人类和动物病毒,有时会受到特定工艺缺陷的阻碍,并且常常导致其旨在保护的生物制品变性。 CFI 病原体灭活技术使病原体“弯曲”,使其灭活,而不破坏医学上重要的输液(例如人血浆)中的蛋白质和酶。这种纯物理技术不涉及使用热、化学物质和/或辐射,这些技术在人血浆病毒灭活方面都有显着的缺点。因此,虽然 CFI 能够灭活多种病毒、细菌和寄生虫,但 CFI 对所处理液体的生物完整性和效力的负面影响可以忽略不计。我们计划将该技术开发为正交病毒灭活技术,与对无包膜病毒无效的溶剂去污剂(SD)等技术和不会使病毒失活的纳滤等被动病毒去除技术相结合。这种正交方法与欧洲和美国的监管机构一致,欧洲和美国监管机构要求至少采用两种通过不同作用机制发挥作用的病原体灭活技术。普遍适用的物理技术对于灭活病毒和新出现的病原体并高度保留生物活性的潜在影响将是非常显着的。这种技术,特别是与传统的病毒灭活或去除方法(例如 SD 或纳滤)一起使用时,将有助于确保血液供应安全,免受新出现的未知病原体和生物恐怖主义威胁。除了人血浆和纤维蛋白原等人血浆蛋白外,所开发的技术还将适用于重组疗法、单克隆抗体、转基因和疫苗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TREVOR P. CASTOR其他文献
TREVOR P. CASTOR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TREVOR P. CASTOR', 18)}}的其他基金
Double-Encapsulated mRNA Vaccine for COVID-19
适用于 COVID-19 的双囊 mRNA 疫苗
- 批准号:
10611763 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Combination Therapeutic for Chronic Opioid Use Disorder Relapse
慢性阿片类药物使用障碍复发的联合治疗
- 批准号:
10706844 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Development of cGMP Manufacturing Process for CBD
CBD cGMP 生产工艺的开发
- 批准号:
8966448 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Development of cGMP Manufacturing Process for CBD
CBD cGMP 生产工艺的开发
- 批准号:
8834719 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
相似海外基金
Research Project 1 Defining oncogenic signaling networks in AIDS-associated viral cancers as targets of chemoprevention and treatment
研究项目 1 将艾滋病相关病毒癌症中的致癌信号网络定义为化学预防和治疗的目标
- 批准号:
10246318 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Research Project 1 Defining oncogenic signaling networks in AIDS-associated viral cancers as targets of chemoprevention and treatment
研究项目 1 将艾滋病相关病毒癌症中的致癌信号网络定义为化学预防和治疗的目标
- 批准号:
10488067 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别: