Biomarkers in Diabetic Neuropathy

糖尿病神经病变的生物标志物

基本信息

项目摘要

DESCRIPTION (provided by applicant): Challenge Area: (03) Biomarker Discovery and Validation Challenge Topic: Discovery of biomarkers for disease risk, progression or response to therapy in diseases of interest to NIDDK. 03-DK-101 Title: Biomarkers in Diabetic Neuropathy Twenty million Americans have diabetes and the incidence is increasing by 5% per year. The most common complication of diabetes is diabetic neuropathy (DN). Current methods used to confirm DN and measure its progression include nerve conduction studies, quantitative sensory measures and decreased sural nerve myelinated fiber density (MFD). The identification of DN biomarkers would greatly enhance our understanding of early events in this complication and could be used to predict its development and rate of progression. No biomarkers have been established for DN leaving this complication to develop unchecked. We hypothesize that a complex network of metabolic changes in type 2 diabetes may predict the onset and progression of DN. Bioinformatics protocols applied to metabolic, neuroanatomical and neurophysiology data from a clinical trial of DN indicate that dyslipidemia, specifically elevated triglyceride levels, is associated with rapid progression of DN. The current proposal employs microarray analyses to examine differentially expressed genes involved in lipid metabolism in both human sural nerve samples and in peripheral nerves from a relevant animal model, the BKS-db/db mouse. Our membership in the National Center for Integrated Biomedical Informatics (NCIBI) at the University of Michigan provides us with a high-powered computing environment and the expertise for computationally intensive analyses. We have two Specific Aims: Hypothesis 1: The application of bioinformatics will identify targets (genes, proteins and metabolic markers) involved in the initiation and progression of DN. Specific Aim 1: Identify genes of interest regulated across species in DN. a. Use microarrays to identify biomarker pathways and targets in human sural nerve samples from patients with type 2 diabetes and DN. b. Perform cross-species validation between sciatic nerve microarrays from mice with type 2 diabetes and the human sural nerve microarrays in Aim 1a. Hypothesis 2: Verified transcriptomics will predict changes in encoded proteins (in peripheral nerve) and metabolites (in plasma and urine) critical to the initiation and progression of DN in human patients and animal models. These functional responses will lead to the identification of biomarkers useful in the diagnosis and therapeutic management of human DN. Specific Aim 2: Validate the biological relevance of identified gene targets in a type 2 murine model with DN a. Localize and quantify target gene products (proteins) in sciatic nerve using immunolocalization and western blotting b. Identify and examine metabolite levels in biological fluids (plasma and urine) PUBLIC HEALTH RELEVANCE: The most common complication of diabetes is peripheral neuropathy (DN). The identification of DN biomarkers would greatly enhance our understanding of early events in this complication and could be used to predict its development and rate of progression. We hypothesize that diabetes directly affects peripheral nerve gene expression and that these data will aid in the identification of useful DN biomarkers. Microarray analyses will compare changes in gene expression between human sural nerve biopsies and BKS-db/db mice, a well-researched model of type 2 diabetes. These data will be used to identify dysregulated intracellular pathways that would result in detectable biomarkers of DN in serum or urine and changes in expression following treatment in animal models.
描述(由申请人提供): 挑战领域:(03)生物标志物发现和验证 挑战主题:发现NIDDK感兴趣疾病的疾病风险,进展或对治疗的反应的生物标志物。 03-DK-101 标题:糖尿病神经病中的生物标志物 两千万美国人患有糖尿病,发病率每年增加5%。糖尿病最常见的并发症是糖尿病神经病(DN)。用于确认DN和测量其进展的当前方法包括神经传导研究,定量感觉测量和降低的Sural神经髓纹纤维密度(MFD)。 DN生物标志物的识别将大大增强我们对这种并发症早期事件的理解,并可用于预测其发展和进展速度。尚未确定生物标志物用于DN,这使这种并发症不受组织。我们假设2型糖尿病中代谢变化的复杂网络可能可以预测DN的发作和进展。来自DN的临床试验的代谢,神经解剖学和神经生理学数据应用的生物信息学方案表明,血脂异常,特异性升高的甘油三酸酯水平与DN的快速进展有关。当前的提案采用微阵列分析来检查人类手术神经样品中涉及脂质代谢的差异表达基因以及相关动物模型的外周神经,即BKS-DB/DB小鼠。我们在密歇根大学国家综合生物医学信息学(NCIBI)的会员资格为我们提供了高功率的计算环境和计算密集型分析的专业知识。我们有两个具体的目标: 假设1:生物信息学的应用将识别涉及DN启动和进展的靶标(基因,蛋白质和代谢标记)。 特定目的1:确定跨DN物种的感兴趣基因。一个。使用微阵列鉴定来自2型糖尿病和DN患者的人类Sural神经样本中的生物标志物途径和靶标。 b。在AIM 1A中的2型糖尿病小鼠的坐骨神经微阵列和人类的Sural神经微阵列之间进行跨物种验证。 假设2:经过验证的转录组学将预测编码的蛋白质(外周神经)和代谢物(在血浆和尿液中)对人类患者和动物模型中DN的起始和进展至关重要。这些功能反应将导致对生物标志物的鉴定,可用于人类DN的诊断和治疗管理。 特定目标2:验证具有DN的2型鼠模型中鉴定基因靶标的生物学相关性 一个。使用免疫定位和蛋白质印迹将靶基因产物(蛋白质)定位和量化靶基因产物(蛋白质) b。识别和检查生物液(血浆和尿液)中的代谢物水平 公共卫生相关性:糖尿病最常见的并发症是周围神经病(DN)。 DN生物标志物的识别将大大增强我们对这种并发症早期事件的理解,并可用于预测其发展和进展速度。我们假设糖尿病直接影响周围神经基因的表达,这些数据将有助于鉴定有用的DN生物标志物。微阵列分析将比较人类Sural神经活检与BKS-DB/DB小鼠之间基因表达的变化,BKS-DB/DB小鼠是2型糖尿病的经过精心研究的模型。这些数据将用于鉴定失调的细胞内途径,这将导致血清或尿液中DN的可检测到的生物标志物以及动物模型治疗后表达的变化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Eva Lucille Feldma...的其他基金

Establishing the Cohort for Occupational Risk and Prevention Studies for Amyotrophic Lateral Sclerosis (ALS CORPS)
建立肌萎缩侧索硬化症职业风险和预防研究队列 (ALS CORPS)
  • 批准号:
    10759103
    10759103
  • 财政年份:
    2023
  • 资助金额:
    $ 25.56万
    $ 25.56万
  • 项目类别:
Metabolic coupling between Schwann cells and axons is functionally distinct from myelination and is disrupted in obesity, prediabetes, and diabetes
雪旺细胞和轴突之间的代谢耦合在功能上不同于髓鞘形成,并且在肥胖、糖尿病前期和糖尿病中被破坏
  • 批准号:
    10689253
    10689253
  • 财政年份:
    2022
  • 资助金额:
    $ 25.56万
    $ 25.56万
  • 项目类别:
Metabolic coupling between Schwann cells and axons is functionally distinct from myelination and is disrupted in obesity, prediabetes, and diabetes
雪旺细胞和轴突之间的代谢耦合在功能上不同于髓鞘形成,并且在肥胖、糖尿病前期和糖尿病中被破坏
  • 批准号:
    10518251
    10518251
  • 财政年份:
    2022
  • 资助金额:
    $ 25.56万
    $ 25.56万
  • 项目类别:
Linking long-term air pollution exposure with inflammation, ALS risk, and disease progression
将长期空气污染暴露与炎症、ALS 风险和疾病进展联系起来
  • 批准号:
    10377806
    10377806
  • 财政年份:
    2021
  • 资助金额:
    $ 25.56万
    $ 25.56万
  • 项目类别:
Linking long-term air pollution exposure with inflammation, ALS risk, and disease progression
将长期空气污染暴露与炎症、ALS 风险和疾病进展联系起来
  • 批准号:
    10662413
    10662413
  • 财政年份:
    2021
  • 资助金额:
    $ 25.56万
    $ 25.56万
  • 项目类别:
Linking long-term air pollution exposure with inflammation, ALS risk, and disease progression
将长期空气污染暴露与炎症、ALS 风险和疾病进展联系起来
  • 批准号:
    10488048
    10488048
  • 财政年份:
    2021
  • 资助金额:
    $ 25.56万
    $ 25.56万
  • 项目类别:
Linking Nerve Bioenergetics with Metabolomics: New Insights into Diabetic Neuroapthy
将神经生物能量学与代谢组学联系起来:对糖尿病神经病变的新见解
  • 批准号:
    9769901
    9769901
  • 财政年份:
    2018
  • 资助金额:
    $ 25.56万
    $ 25.56万
  • 项目类别:
Neural Stem Cell Transplantation: A Novel Cellular Therapy for Alzheimer's Disease
神经干细胞移植:阿尔茨海默病的新型细胞疗法
  • 批准号:
    9754727
    9754727
  • 财政年份:
    2018
  • 资助金额:
    $ 25.56万
    $ 25.56万
  • 项目类别:
Training in Clinical and Basic Neuroscience
临床和基础神经科学培训
  • 批准号:
    9320327
    9320327
  • 财政年份:
    2016
  • 资助金额:
    $ 25.56万
    $ 25.56万
  • 项目类别:
2009 International Peripheral Nerve Society Meeting at Wurzburg, Germany
2009 年德国维尔茨堡国际周围神经学会会议
  • 批准号:
    7674860
    7674860
  • 财政年份:
    2009
  • 资助金额:
    $ 25.56万
    $ 25.56万
  • 项目类别:

相似海外基金

Arlene George F32
阿琳·乔治 F32
  • 批准号:
    10722238
    10722238
  • 财政年份:
    2024
  • 资助金额:
    $ 25.56万
    $ 25.56万
  • 项目类别:
Investigation of UBQLN2 in neuronal dysfunction and ALS-FTD
UBQLN2 在神经元功能障碍和 ALS-FTD 中的研究
  • 批准号:
    10638277
    10638277
  • 财政年份:
    2023
  • 资助金额:
    $ 25.56万
    $ 25.56万
  • 项目类别:
Novel application of pharmaceutical AMD3100 to reduce risk in opioid use disorder: investigations of a causal relationship between CXCR4 expression and addiction vulnerability
药物 AMD3100 降低阿片类药物使用障碍风险的新应用:CXCR4 表达与成瘾脆弱性之间因果关系的研究
  • 批准号:
    10678062
    10678062
  • 财政年份:
    2023
  • 资助金额:
    $ 25.56万
    $ 25.56万
  • 项目类别:
Novel first-in-class Therapeutics for Rheumatoid Arthritis
类风湿关节炎的一流新疗法
  • 批准号:
    10696749
    10696749
  • 财政年份:
    2023
  • 资助金额:
    $ 25.56万
    $ 25.56万
  • 项目类别:
Mentoring Emerging Researchers at CHLA (MERCH-LA)
指导 CHLA (MERCH-LA) 的新兴研究人员
  • 批准号:
    10797938
    10797938
  • 财政年份:
    2023
  • 资助金额:
    $ 25.56万
    $ 25.56万
  • 项目类别: