Assessing Tele-Health Outcomes in Multiyear Extensions of Parkinson's Disease Trials-2 (AT-HOME PD-2)
评估帕金森病多年扩展试验中的远程医疗结果 Trials-2 (AT-HOME PD-2)
基本信息
- 批准号:10658165
- 负责人:
- 金额:$ 126.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAffectBiologicalCOVID-19 pandemicCellular PhoneChargeClinicalClinical ResearchClinical TrialsCognitiveCollectionDataData CollectionData SetDecentralizationDevelopmentDiseaseDisease OutcomeDisease ProgressionEarly identificationEvaluationEventFrequenciesFundingGaitGeographyGoalsHealth Services AccessibilityHeart RateHeterogeneityHomeImpaired cognitionIndividualInstitutionalizationKnowledgeLinkLongitudinal StudiesMeasuresMethodsModelingMoodsMorbidity - disease rateMotorNational Institute of Neurological Disorders and StrokeNatural HistoryNeurodegenerative DisordersObservational StudyOutcomeOutcome MeasureParkinson DiseaseParticipantPatient Outcomes AssessmentsPatient Self-ReportPatientsPersonsPharmaceutical PreparationsPhase III Clinical TrialsPhenotypePhysical activityPhysical assessmentPlasmaPopulationQualifyingQuestionnairesRefractoryReportingResearchResearch MethodologyRiskSiteSleepSourceSurveysSymptomsTimeTrainingTravelTremorUnited States National Institutes of HealthWristactigraphyclinical careclinical developmentclinical phenotypeclinical predictorsclinically relevantcohortdigitaldigital assessmentdigital tooldisabilityexperiencefall riskfallsfitbitfitnessfollow-upgenome sequencinghigh riskillness lengthimprovedinsightmortalitynervous system disordernovel therapeuticspatient orientedposture instabilityremote assessmentresearch studysensorsleep patternsmartphone applicationsmartphone based assessmenttelehealththerapeutic developmenttoolvideo visitwhole genome
项目摘要
The COVID-19 pandemic has disrupted clinical research and highlighted the value of patient centered research
methods that enable participation from the home and collection of data directly from participants. Such
decentralized research studies that harness video visits, digital tools and participant reporting, can reach a large,
geographically dispersed population of participants, increase the frequency and scope of evaluation, and reduce
the burden of participation. Parkinson’s disease, a clinically heterogeneous neurodegenerative disorder that
causes progressive disability, is well suited to such a model. Traditional assessments are typically subjective,
insensitive to change, and limited to episodic administration and therefore fail to capture the complexity of
Parkinson’s disease. AT-HOME PD, the largest on-going decentralized longitudinal observational Parkinson’s
disease study with digital tools, is remotely characterizing ~225 participants with Parkinson’s disease from two
NINDS-funded, phase 3 clinical trials, STEADY-PD III and SURE-PD3. These studies yielded cohorts with
comprehensive clinical phenotyping, whole genome sequencing, and serial plasma collection. AT-HOME PD
participants are being characterized through video visits, smartphone-based assessments, and an online survey
platform. The cohort is now approaching mid-stage Parkinson’s disease, presenting an opportunity to advance
our understanding of this under-studied population, improve the prediction of clinically relevant disease
milestones like falls and cognitive impairment, quantify physical activity, and identify sensitive remote disease
measures. This project will extend the follow-up of this cohort by 3 years and expand digital phenotyping of
participants, using smartphone-based assessments and two wrist-worn sensors. The aims of this project are to
1) evaluate the extent to which digital tools and remote participant reporting can improve the prediction of
clinically relevant disease milestones compared with traditional measures, 2) quantify longitudinal change in
physical activity, steps taken, and gait in mid-stage Parkinson’s disease in the real-world, and 3) explore the
relationship between physical activity and clinical outcomes in mid-stage Parkinson’s disease. We will generate
a dataset with approximately 10 continuous years of data on PD progression that begins prior to use of
dopaminergic medications and progresses to midstage Parkinson’s disease and beyond. This rich dataset will
accelerate therapeutic development by filling knowledge gaps in the mid-stage Parkinson’s disease population,
helping to optimize models for conducting patient-centered remote research, evaluating new methods for
predicting disease outcomes, and evaluating remote outcome measures.
COVID-19 大流行扰乱了临床研究,凸显了以患者为中心的研究的价值
允许在家中参与并直接从参与者那里收集数据的方法。
利用视频访问、数字工具和参与者报告的去中心化研究可以达到大规模、
参与者的地理分布,增加评估的频率和范围,并减少
帕金森病是一种临床异质性神经退行性疾病,
导致进行性残疾,非常适合这种模型,传统的评估通常是主观的,
对变化不敏感,并且仅限于间歇性管理,因此无法捕捉到变化的复杂性
帕金森病,最大的持续分散纵向观察帕金森病。
使用数字工具进行疾病研究,正在远程描述来自两个国家的约 225 名帕金森病参与者的特征
NINDS 资助的 3 期临床试验 STEADY-PD III 和 SURE-PD3 这些研究产生了队列。
全面的临床表型分析、全基因组测序和连续血浆采集。
通过视频访问、基于智能手机的评估和在线调查来对参与者进行特征描述
该队列目前正接近帕金森病的中期阶段,提供了一个前进的机会。
我们对这一未被充分研究的人群的了解,提高了对临床相关疾病的预测
跌倒和认知障碍等里程碑、量化身体活动并识别敏感的远程疾病
该项目将对该队列的随访时间延长 3 年,并扩大数字表型分析。
参与者使用基于智能手机的评估和两个腕戴式传感器。
1)评估数字工具和远程参与者报告可以在多大程度上改善预测
与传统措施相比,临床相关疾病里程碑,2) 量化纵向变化
现实世界中帕金森病中期的体力活动、采取的步骤和步态,以及 3) 探索
我们将生成中期帕金森病的体力活动与临床结果之间的关系。
包含大约 10 个连续年的 PD 进展数据的数据集,该数据在使用之前开始
这个丰富的数据集将帮助您了解多巴胺能药物以及中年帕金森病等疾病的进展。
通过填补中期帕金森病人群的知识空白来加速治疗开发,
帮助优化进行以患者为中心的远程研究的模型,评估新方法
预测疾病结果,并评估远程结果测量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruth Schneider其他文献
Ruth Schneider的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 126.53万 - 项目类别:
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 126.53万 - 项目类别:
Integrative genomic and functional genomic studies to connect variant to function for CAD GWAS loci
整合基因组和功能基因组研究,将 CAD GWAS 位点的变异与功能联系起来
- 批准号:
10639274 - 财政年份:2023
- 资助金额:
$ 126.53万 - 项目类别:
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
- 批准号:
10648495 - 财政年份:2023
- 资助金额:
$ 126.53万 - 项目类别:
Transfer learning leveraging large-scale transcriptomics to map disrupted gene networks in cardiovascular disease
利用大规模转录组学的转移学习来绘制心血管疾病中被破坏的基因网络
- 批准号:
10696753 - 财政年份:2023
- 资助金额:
$ 126.53万 - 项目类别: