Predicting individual responses to treatment for alcohol use disorder.
预测个体对酒精使用障碍治疗的反应。
基本信息
- 批准号:10659811
- 负责人:
- 金额:$ 61.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-20 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:Alcohol consumptionAlgorithmsAreaBehavior TherapyBehavioralBiological MarkersCaringCharacteristicsClientClinicalClinical DataClinical TrialsClinical Trials Cooperative GroupCommunicationComplexDataDiseaseEnsureGoalsHeavy DrinkingHeterogeneityIndividualIndividual DifferencesInterventionLiteratureMethodsNaltrexoneOutcomePatientsPharmaceutical PreparationsPharmacological TreatmentPrediction of Response to TherapyPrevention programProviderPsychosocial FactorPublic HealthPublishingRandomized, Controlled TrialsReactionRelapseResearchResearch PersonnelSamplingSelection for TreatmentsSpecific qualifier valueSymptomsTelephoneTestingTreatment EffectivenessTreatment EfficacyTreatment outcomeValidationWorkacamprosatealcohol abuse therapyalcohol interventionalcohol responsealcohol use disorderbehavior testclinical decision-makingclinical practicedesignexperienceimprovedimproved outcomeindividual responseindividualized medicinemachine learning algorithmmindfulness interventionnovel strategiespersonalized approachpersonalized medicinepharmacologicpredicting responseprediction algorithmpredictive modelingrandomized trialrandomized, clinical trialsrelapse preventionresponsesimulationtheoriestopiramatetreatment effecttreatment responseusability
项目摘要
Project summary:
Treatment of alcohol use disorder (AUD) is characterized by common relapse, heterogeneity in findings, and
many diverse interventions which show modest efficacy but fail to out perform each other. Research aiming to
explain the existing heterogeneity has found many significant moderators of treatment effects but few of these
have effect sizes large enough to indicate that they should be used in clinical practice for targeting treatments.
New personalized medicine methods which use machine learning algorithms to create predictions of
responses to AUD treatment which take into account multiple predictors show early promise. This research
This research uses data from 11 randomized clinical trials, 6 of behavioral relapse prevention programs and 5
of pharmacological interventions to reduce heavy drinking, to develop and cross validate individual predictions
of treatment effects on heavy drinking. We will also test the significance of individual differences for each
intervention and provide predictive intervals for individuals describing their expected response to different
interventions. The study also aims to test new approaches for combining data across multiple trials and for
improving precision of predictions in order to make the use of the predicted individual treatment effects (PITEs)
framework more useful in clinical practice.
At the end of this study there will be published algorithms for comparing predictions of treatment effects for
new individuals across multiple treatments, predictive intervals for those effects, and an assessment of internal
and, where possible, external validation of those predictions. The work emphasizes replicability of results
through cross-validation (which will itself be tested with simulations), a priori specification of predictive methods
and covariates, and use of an expert panel to make theory and literature informed decisions. This research is
designed to make personalized medicine for treatment of AUD usable in clinical practice through its integration
of theory, clinical experience brought by the clinical advisory board, and clear communication of results to a
clinical audience.
项目概要:
酒精使用障碍 (AUD) 的治疗特点是常见的复发、结果的异质性和
许多不同的干预措施显示出一定的效果,但未能相互超越。研究旨在
解释现有的异质性已经发现了许多治疗效果的显着调节因素,但其中很少
效应大小足够大,表明它们应该在临床实践中用于靶向治疗。
新的个性化医疗方法使用机器学习算法来创建预测
考虑到多个预测因素,对 AUD 治疗的反应显示出了早期的希望。这项研究
这项研究使用了 11 项随机临床试验、6 项行为复发预防计划和 5 项行为复发预防计划的数据。
减少酗酒、开发和交叉验证个体预测的药物干预措施
对酗酒的治疗效果。我们还将测试每个个体差异的显着性
干预并为个人提供预测区间,描述他们对不同情况的预期反应
干预措施。该研究还旨在测试合并多个试验数据的新方法以及
提高预测精度,以便利用预测的个体治疗效果 (PITE)
框架在临床实践中更有用。
在本研究结束时,将发布用于比较治疗效果预测的算法
跨多种治疗的新个体、这些效果的预测间隔以及内部评估
并在可能的情况下对这些预测进行外部验证。这项工作强调结果的可复制性
通过交叉验证(其本身将通过模拟进行测试),预测方法的先验规范
和协变量,并利用专家小组做出基于理论和文献的决策。这项研究是
旨在通过整合使治疗 AUD 的个性化医疗可用于临床实践
理论、临床顾问委员会带来的临床经验以及向临床专家清晰传达结果
临床观众。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
M LEE VAN HORN其他文献
M LEE VAN HORN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('M LEE VAN HORN', 18)}}的其他基金
Risk in Context: New Methodology for Modeling Risk by Context Interactions
背景中的风险:通过背景交互进行风险建模的新方法
- 批准号:
9215752 - 财政年份:2007
- 资助金额:
$ 61.1万 - 项目类别:
Risk in Context: New Methodology for Modeling Risk by Context Interactions
背景中的风险:通过背景交互进行风险建模的新方法
- 批准号:
7320069 - 财政年份:2007
- 资助金额:
$ 61.1万 - 项目类别:
Risk in Context: New Methodology for Modeling Risk by Context Interactions
背景中的风险:通过背景交互进行风险建模的新方法
- 批准号:
8241960 - 财政年份:2007
- 资助金额:
$ 61.1万 - 项目类别:
Risk in Context: New Methodology for Modeling Risk by Context Interactions
背景中的风险:通过背景交互进行风险建模的新方法
- 批准号:
7659362 - 财政年份:2007
- 资助金额:
$ 61.1万 - 项目类别:
Risk in Context: New Methodology for Modeling Risk by Context Interactions
背景中的风险:通过背景交互进行风险建模的新方法
- 批准号:
8105876 - 财政年份:2007
- 资助金额:
$ 61.1万 - 项目类别:
Risk in Context: New Methodology for Modeling Risk by Context Interactions
背景中的风险:通过背景交互进行风险建模的新方法
- 批准号:
7487914 - 财政年份:2007
- 资助金额:
$ 61.1万 - 项目类别:
Risk in Context: New Methodology for Modeling Risk by Context Interactions
背景中的风险:通过背景交互进行风险建模的新方法
- 批准号:
8645660 - 财政年份:2007
- 资助金额:
$ 61.1万 - 项目类别:
Risk in Context: New Methodology for Modeling Risk by Context Interactions
背景中的风险:通过背景交互进行风险建模的新方法
- 批准号:
8447584 - 财政年份:2007
- 资助金额:
$ 61.1万 - 项目类别:
Risk in Context: New Methodology for Modeling Risk by Context Interactions
背景中的风险:通过背景交互进行风险建模的新方法
- 批准号:
8829685 - 财政年份:2007
- 资助金额:
$ 61.1万 - 项目类别:
Effects of Classroom Practices and School Context
课堂实践和学校环境的影响
- 批准号:
6683427 - 财政年份:2003
- 资助金额:
$ 61.1万 - 项目类别:
相似国自然基金
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
- 批准号:62303197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
- 批准号:12371366
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
- 批准号:12301508
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
- 批准号:62303204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
集装箱港口装卸运输区域基于碳配额碳交易的运营优化模型和算法研究
- 批准号:72271152
- 批准年份:2022
- 资助金额:44 万元
- 项目类别:面上项目
相似海外基金
Automatic, Opportunistic Surveillance of Hip Bone Fragility in X-ray Images
X 射线图像中髋骨脆性的自动、机会性监视
- 批准号:
10697573 - 财政年份:2023
- 资助金额:
$ 61.1万 - 项目类别:
Automatic, Opportunistic Surveillance of Hip Bone Fragility in X-ray Images
X 射线图像中髋骨脆性的自动、机会性监视
- 批准号:
10697573 - 财政年份:2023
- 资助金额:
$ 61.1万 - 项目类别:
Value of Sleep Metrics in Predicting Opioid-Use Disorder Treatment Outcomes: Leadership and Data Coordinating Center
睡眠指标在预测阿片类药物使用障碍治疗结果中的价值:领导力和数据协调中心
- 批准号:
10783610 - 财政年份:2023
- 资助金额:
$ 61.1万 - 项目类别:
ShEEP Request for iNSCOPIX nVue System
SheEEP 对 iNSCOPIX nVue 系统的请求
- 批准号:
10534510 - 财政年份:2022
- 资助金额:
$ 61.1万 - 项目类别:
Optical probe for continuous real-time in vivo study of brain alcohol
用于连续实时体内脑酒精研究的光学探针
- 批准号:
10527743 - 财政年份:2022
- 资助金额:
$ 61.1万 - 项目类别: