Statistical methods to characterize causal mechanisms by which air pollution affects the recurrence of cardiovascular events
描述空气污染影响心血管事件复发因果机制的统计方法
基本信息
- 批准号:10660281
- 负责人:
- 金额:$ 179.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-23 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:Acute myocardial infarctionAddressAdoptionAffectAgeAir PollutantsAir PollutionAttentionBehaviorBiologicalCardiovascular DiseasesCardiovascular systemCause of DeathCessation of lifeClinicalClinical PathwaysCollectionComputer softwareDataData CollectionData SourcesDiseaseDisease ProgressionEnrollmentEnsureEnvironmental HealthEpidemiologyEventExposure toFee-for-Service PlansGenderGoalsHealthHealth HazardsHeart DiseasesHospitalizationHyperlipidemiaHypertensionIndividualInpatientsKnowledgeLinkMediatingMediationMediatorMedicareMedicare Part AMedicare claimMethodologyMethodsModelingModernizationNatureNitrogen DioxideOutcomeOutpatientsOzoneParameter EstimationPathway interactionsPeer ReviewPoliciesProceduresProcessRaceRecurrenceRiskSamplingScourgeStatistical MethodsStructural ModelsSurveysSyndromeTechniquesTimeVisitWorkambient air pollutionbeneficiaryburden of illnesscardiovascular disorder riskcomputational platformfine particleshuman old age (65+)improvedinnovationmortalitynovelopen sourcepollutantpreventprimary outcomesecondary analysissemiparametricsimulationstatistical and machine learning
项目摘要
Project Summary
One of our era's greatest scourges is air pollution, and it is well documented that exposure to fine particles (e.g.,
PM2.5) increases the risk of cardiovascular disease (CVD) and death. However, there are two critical knowledge
gaps. First, existing studies have mainly considered the occurrence of the first adverse health event as health out-
comes; hence, the impact of overall disease burden and of PM2.5 exposure on disease progression both remain
unknown. Second, to our knowledge, there are no studies assessing the causal pathways by which exposure
to air pollutants impacts recurrent cardiovascular events. Without a better understanding of disease progression
and clinical mediators, our ability to inform regulatory policy and prevent disease is severely hampered.
Limited attention has been given to developing methods for assessing the causal effect of time varying ex-
posures, especially in the presence of a terminating event like death. A related methodological gap is the ability
to identify (time varying) mediators or estimating mediated effects of time varying exposure for a recurrent event
outcome. This proposal addresses these two critical methodological gaps in causal inference, the overarching
goals being to elucidate (i) the impact of PM2.5 on the burden and progression of CVD; and, (ii) the key causal
pathways by which air pollution exposure impacts such events. Accomplishing such goals will be facilitated by
new analyses of an unprecedented data collection consisting of (a) an already harmonized and linked Part A
Medicare data (33+ million subjects 2000 to 2019) at both the individual (e.g., age, gender, race, date of hospital-
ization for any of the possible causes for hospitalizations, date of death) and zip code (e.g., daily PM2.5, O3 and
NO2 levels; many potential confounders) levels; and, (b) an augmented version of these data including individu-
ally linked Part B data (doctor visits, and outpatient procedures for any cause) for a representative sample of over
15 million Medicare enrollees (2012 to 2019) and, (c) the Medicare Current Beneficiary Survey (MCBS) data for
the same study period, as a secondary analysis to account for possible bias due to unmeasured confounding.
In methodological terms, we propose robust marginal and structural nested models that allow estimation of
both instantaneous and delayed effects of time varying exposure to PM2.5 on recurrence of CVD events (Aim 1).
We further propose a semiparametric approach to identify clinically important pathways by which exposure to air
pollutants increases the risk of recurrence of CVD hospitalizations and death, and estimate the corresponding
mediated effects (Aim 2). We will implement our methods and apply them to the above-described rich data
source, focusing specifically on (Aim 3): (i) estimating the causal effects of PM2.5 exposure on two relevant
causal estimands for recurrent events in the presence of mortality; (ii) identifying key mediators and characterize
clinical pathways through which exposure to air pollution increases risks of CVD progression and death; and,
(iii) identifying and investigating the disease groups that are biologically plausible. Finally, we will create and
disseminate open-source, peer-reviewed statistical software to ensure ease-of-use and accessibility (Aim 4).
项目概要
我们这个时代最大的冲刷之一是空气污染,有充分的证据表明,接触细颗粒物(例如,
PM2.5)会增加心血管疾病(CVD)和死亡的风险但是,有两个关键知识。
首先,现有研究主要将首次不良健康事件的发生视为健康状况。
因此,总体疾病负担和 PM2.5 暴露对疾病进展的影响仍然存在。
其次,据我们所知,没有研究评估暴露的因果途径。
在没有更好地了解疾病进展的情况下,空气污染物会影响复发性心血管事件。
和临床调节剂,我们告知监管政策和预防疾病的能力受到严重损害。
人们对开发评估随时间变化的因果效应的方法给予了有限的关注。
姿势,特别是在出现死亡等终止事件的情况下,一个相关的方法论差距是能力。
识别(随时间变化的)中介因素或估计随时间变化的暴露对重复事件的中介效应
该提案解决了因果推理中的两个关键方法论差距,即首要问题。
目标是阐明 (i) PM2.5 对 CVD 负担和进展的影响;以及 (ii) 关键因果关系;
空气污染暴露影响此类事件的途径将有助于实现这些目标。
对前所未有的数据收集的新分析,包括 (a) 已经协调和链接的 A 部分
个人的医疗保险数据(2000 年至 2019 年 33+ 百万受试者)(例如年龄、性别、种族、住院日期)
任何可能的住院原因、死亡日期)和邮政编码(例如每日 PM2.5、O3 和
NO2 水平;许多潜在的混杂因素)水平;以及,(b)这些数据的增强版本,包括个体
与 B 部分数据(就诊和出于任何原因的门诊程序)相关联的代表性样本超过
1500 万医疗保险参保者(2012 年至 2019 年),以及 (c) 医疗保险当前受益调查 (MCBS) 数据
同一研究时期,作为二次分析,以解释由于未测量的混杂因素可能导致的偏差。
在方法论方面,我们提出了稳健的边际和结构嵌套模型,可以估计
随时间变化的 PM2.5 暴露对 CVD 事件复发的瞬时和延迟影响(目标 1)。
我们进一步提出了一种半参数方法来确定暴露于空气中的临床重要途径
污染物增加CVD住院复发和死亡的风险,并估计相应的
我们将实施我们的方法并将其应用于上述丰富的数据。
源,特别关注(目标 3):(i) 估计 PM2.5 暴露对两个相关的因果影响
存在死亡的情况下反复发生事件的因果估计;(ii) 确定关键中介因素并描述特征;
暴露于空气污染会增加 CVD 进展和死亡风险的临床途径;
(iii) 识别并研究生物学上合理的疾病组。最后,我们将创建并研究这些疾病。
传播开源、经过同行评审的统计软件,以确保易用性和可访问性(目标 4)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francesca Dominici其他文献
Francesca Dominici的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francesca Dominici', 18)}}的其他基金
CAFÉ: a Research Coordinating Center to Convene, Accelerate, Foster, and Expand the Climate Change and Health Community of Practice
CAF:一个研究协调中心,旨在召集、加速、培育和扩大气候变化与健康实践社区
- 批准号:
10689581 - 财政年份:2023
- 资助金额:
$ 179.01万 - 项目类别:
Augmented mapping of the Extreme Heat and Cold Events (EHE/ECE) at continental scale with cloud-based computing
利用基于云的计算对大陆范围内的极热和极冷事件 (EHE/ECE) 进行增强测绘
- 批准号:
10826885 - 财政年份:2022
- 资助金额:
$ 179.01万 - 项目类别:
The confluence of extreme heat cold on the health and longevity of an Aging Population with Alzheimers and related Dementia
极热寒冷对患有阿尔茨海默病和相关痴呆症的老年人口的健康和寿命的影响
- 批准号:
10448053 - 财政年份:2022
- 资助金额:
$ 179.01万 - 项目类别:
Integrating Air Pollution Prediction Models: Uncertainty Quantification and Propagation in Health Studies
整合空气污染预测模型:健康研究中的不确定性量化和传播
- 批准号:
10543137 - 财政年份:2020
- 资助金额:
$ 179.01万 - 项目类别:
Integrating Air Pollution Prediction Models: Uncertainty Quantification and Propagation in Health Studies
整合空气污染预测模型:健康研究中的不确定性量化和传播
- 批准号:
10330579 - 财政年份:2020
- 资助金额:
$ 179.01万 - 项目类别:
Integrating Air Pollution Prediction Models: Uncertainty Quantification and Propagation in Health Studies
整合空气污染预测模型:健康研究中的不确定性量化和传播
- 批准号:
9885918 - 财政年份:2020
- 资助金额:
$ 179.01万 - 项目类别:
Relationship Between Multiple Environmental Exposures and CVD Incidence and Survival: Vulnerability and Susceptibility
多重环境暴露与 CVD 发病率和生存率之间的关系:脆弱性和易感性
- 批准号:
10163485 - 财政年份:2020
- 资助金额:
$ 179.01万 - 项目类别:
Relationship Between Multiple Environmental Exposures and CVD Incidence and Survival: Vulnerability and Susceptibility
多重环境暴露与 CVD 发病率和生存率之间的关系:脆弱性和易感性
- 批准号:
10310468 - 财政年份:2017
- 资助金额:
$ 179.01万 - 项目类别:
Relationship Between Multiple Environmental Exposures and CVD Incidence and Survival: Vulnerability and Susceptibility
多重环境暴露与 CVD 发病率和生存率之间的关系:脆弱性和易感性
- 批准号:
10058839 - 财政年份:2017
- 资助金额:
$ 179.01万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
- 批准号:
10602275 - 财政年份:2023
- 资助金额:
$ 179.01万 - 项目类别:
Developing an Unbiased Machine Learning Tool for Prediction of Acute Coronary Syndrome
开发用于预测急性冠状动脉综合征的无偏差机器学习工具
- 批准号:
10258045 - 财政年份:2021
- 资助金额:
$ 179.01万 - 项目类别:
Risk prediction of breast cancer treatment-related cardiotoxicity to guide clinical decision making
乳腺癌治疗相关心脏毒性的风险预测以指导临床决策
- 批准号:
10452489 - 财政年份:2020
- 资助金额:
$ 179.01万 - 项目类别:
Risk prediction of breast cancer treatment-related cardiotoxicity to guide clinical decision making
乳腺癌治疗相关心脏毒性的风险预测以指导临床决策
- 批准号:
10191034 - 财政年份:2020
- 资助金额:
$ 179.01万 - 项目类别:
Risk prediction of breast cancer treatment-related cardiotoxicity to guide clinical decision making
乳腺癌治疗相关心脏毒性的风险预测以指导临床决策
- 批准号:
10062695 - 财政年份:2020
- 资助金额:
$ 179.01万 - 项目类别: