A Lexicon of Stapled Peptide Helices Engineered to Capture the Protein Interactom

旨在捕获蛋白质相互作用的钉合肽螺旋词典

基本信息

  • 批准号:
    7937806
  • 负责人:
  • 金额:
    $ 43.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-30 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Whether fleeting or stable, normal or aberrant, protein interactions and their sites of contact form the basis for discovery of biological pathways, disease mechanisms, and opportunities for therapeutic intervention. The goal of this proposal is to intertwine chemistry, biology, and medicine to create a transformative high- throughput technology that precisely identifies protein targets and their explicit sites of interaction. Like the teeth of a key that perfectly fit into a lock, complementary protein shape is critical to the execution of biological interactions. The molecular handshakes of proteins rely on their discrete substructures and these contact points are typically embedded within a complex protein that provides the infrastructure to maintain the essential bioactive fold. Ideally, these evolutionarily honed substructures could be used to capture and thereby catalogue their protein targets; however, out of context from the whole protein, bioactive subdomains often unfold, resulting in loss of biological shape, potency, and specificity. To reclaim the enormous capacity of structured peptides to selectively bind and capture their protein targets, we will first restore their bioactive shape and then chemically derivatize them for both non-covalent and covalent capture. In this proposal, we focus on the peptide 1-helix, arguably the most ubiquitous and versatile biological shape harnessed by the cell. We will apply our robust "hydrocarbon stapling" technology to synthesize a diversity of bioactive 1-helices and then chemically install new immobilization and intercalating functionalities to expand our grasp of the interactome by trapping the full-range of stable to transient protein interactors. Our covalent capture chemistry and proteomic analyses afford a two-for-one advantage: identification of protein targets and their sites of interaction. Since protein interaction sites are the topographic templates for drug design, we believe that the binding site identification feature of our approach will provide a critical link between interactome discovery and clinical translation. To accomplish our goals, we will take a step-wise approach: (1) structural stabilization, (2) directional affinity capture, (3) covalent capture, and (4) binding site identification. Each step will be adapted for high-throughput and validated using proof-of-concept biological experiments. Once identified and catalogued, protein interactions must be validated biologically. A seminal feature of our approach is that the very 1-helices we use to capture the protein interactome can be used to validate and drug the interactions in cellular and in vivo studies. Thus, we believe that engineering stapled peptides for protein capture will create a powerful and versatile approach to elucidating the interactome, and massively expand the potential for discovery of novel interactions and how they impact health and disease. PUBLIC HEALTH RELEVANCE: Protein interactions mediate innumerable cellular activities in health and disease; our goal is to create a transformative high-throughput technology that rapidly and precisely identifies protein targets and their explicit sites of interaction. The novelty of our multidisciplinary approach begins with the chemical recreation of protein substructures that mediate protein interaction, transforming Nature's evolutionarily-honed binding motifs into a discovery toolbox; next, we chemically implant in these bioactive structures molecular functionalities for immobilization and irreversible protein intercalation. By operating at the interface of chemistry, biology, and medicine, we aim to develop and deploy a technology that surmounts the formidable challenge of identifying, distinguishing, and drugging the broad array of human protein targets.
描述(由申请人提供):无论是短暂的还是稳定,正常或异常,蛋白质相互作用及其接触部位构成了发现生物途径,疾病机制和治疗干预的机会的基础。该建议的目的是交织化学,生物学和医学,以创建一种变革性的高吞吐技术,以精确识别蛋白质靶标及其显式相互作用。就像完全适合锁定的钥匙的牙齿一样,互补的蛋白质形状对于执行生物学相互作用至关重要。蛋白质的分子握手依赖于它们的离散子结构,这些接触点通常嵌入复杂的蛋白质中,该蛋白质提供了基础结构以维持必需的生物活性折叠。理想情况下,这些进化磨练的子结构可用于捕获并从而对其蛋白质靶标进行分类。然而,在整个蛋白质的上下文中,生物活性亚域通常会展开,从而导致生物形状,效力和特异性的丧失。为了收回结构化肽选择性结合和捕获其蛋白质靶标的巨大能力,我们将首先恢复其生物活性形状,然后化学衍生它们,以既非共价和共价捕获。在此提案中,我们专注于肽1-螺旋,可以说是细胞利用的最普遍和多功能的生物形状。我们将应用强大的“碳氢化合物钉”技术来综合多样的生物活性1螺旋,然后化学安装新的固定化和插入功能,从而扩大我们对相互作用组的掌握,通过捕获稳定的稳定范围为瞬时蛋白质相互作用者。我们的共价捕获化学和蛋白质组学分析具有两对一优势:识别蛋白质靶标及其相互作用位点。由于蛋白质相互作用位点是药物设计的地形模板,因此我们认为我们方法的结合位点识别特征将在相互作用的发现与临床翻译之间提供关键的联系。为了实现我们的目标,我们将采用逐步的方法:(1)结构稳定,(2)方向亲和力捕获,(3)共价捕获和(4)结合位点识别。每个步骤都将适应高通量,并使用概念验证生物学实验进行验证。一旦确定并分类,蛋白质相互作用就必须在生物学上进行验证。我们方法的开创性特征是,我们用来捕获蛋白质相互作用组的1个螺旋可用于验证和吸毒细胞和体内研究中的相互作用。因此,我们认为,用于蛋白质捕获的工程钉肽将创建一种强大而多才多艺的方法来阐明相互作用,并大大扩展了发现新型相互作用以及它们如何影响健康和疾病的潜力。 公共卫生相关性:蛋白质相互作用介导了健康和疾病中无数的细胞活动;我们的目标是创建一种变革性的高通量技术,该技术可以快速并精确地识别蛋白质靶标及其显式相互作用。我们多学科方法的新颖性始于介导蛋白质相互作用的蛋白质亚结构的化学娱乐,将自然的进化结合基序转化为发现工具箱。接下来,我们在这些生物活性结构中化学植入分子功能,以固定和不可逆的蛋白质插入。通过在化学,生物学和医学的界面上运行,我们旨在开发和部署一项技术,以探索识别,区分和吸毒的巨大挑战。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Loren David Walensky其他文献

Loren David Walensky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Loren David Walensky', 18)}}的其他基金

Conformational Regulation and Therapeutic Targeting of Oncogenic KRAS
致癌 KRAS 的构象调控和治疗靶向
  • 批准号:
    10549717
  • 财政年份:
    2019
  • 资助金额:
    $ 43.27万
  • 项目类别:
Biophysical and Mechanistic Determinants for Cancer Cell Import of Hydrocarbon-Stapled Peptides
癌细胞输入碳氢化合物肽的生物物理和机制决定因素
  • 批准号:
    9178990
  • 财政年份:
    2016
  • 资助金额:
    $ 43.27万
  • 项目类别:
Dissecting and Targeting Deregulated Mitochondrial Apoptosis in Human Cancer
剖析和靶向人类癌症中失调的线粒体凋亡
  • 批准号:
    9321122
  • 财政年份:
    2015
  • 资助金额:
    $ 43.27万
  • 项目类别:
Dissecting and Targeting Deregulated Mitochondrial Apoptosis in Human Cancer
剖析和靶向人类癌症中失调的线粒体凋亡
  • 批准号:
    10474551
  • 财政年份:
    2015
  • 资助金额:
    $ 43.27万
  • 项目类别:
Dissecting and Targeting Deregulated Mitochondrial Apoptosis in Human Cancer
剖析和靶向人类癌症中失调的线粒体凋亡
  • 批准号:
    10669117
  • 财政年份:
    2015
  • 资助金额:
    $ 43.27万
  • 项目类别:
Dissecting and Targeting Deregulated Mitochondrial Apoptosis in Human Cancer
剖析和靶向人类癌症中失调的线粒体凋亡
  • 批准号:
    8955883
  • 财政年份:
    2015
  • 资助金额:
    $ 43.27万
  • 项目类别:
Dissecting and Targeting Deregulated Mitochondrial Apoptosis in Human Cancer
剖析和靶向人类癌症中失调的线粒体凋亡
  • 批准号:
    9977962
  • 财政年份:
    2015
  • 资助金额:
    $ 43.27万
  • 项目类别:
Dissecting and Targeting Deregulated Mitochondrial Apoptosis in Human Cancer
剖析和靶向人类癌症中失调的线粒体凋亡
  • 批准号:
    10299794
  • 财政年份:
    2015
  • 资助金额:
    $ 43.27万
  • 项目类别:
Stapled Antigens for HIV-1 Vaccination
用于 HIV-1 疫苗接种的钉合抗原
  • 批准号:
    7737500
  • 财政年份:
    2009
  • 资助金额:
    $ 43.27万
  • 项目类别:
A Lexicon of Stapled Peptide Helices Engineered to Capture the Protein Interactom
旨在捕获蛋白质相互作用的钉合肽螺旋词典
  • 批准号:
    8137168
  • 财政年份:
    2009
  • 资助金额:
    $ 43.27万
  • 项目类别:

相似国自然基金

结合态抗生素在水产品加工过程中的消解机制与产物毒性解析
  • 批准号:
    32302247
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
ABHD6与AMPA受体结合位点的鉴定及该位点在AMPA受体转运和功能调控中的作用研究
  • 批准号:
    32300794
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
α-突触核蛋白与脂肪酸结合蛋白FABP3相互作用维持自身低聚体形态的机制研究
  • 批准号:
    82301632
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于荧光共振能量转移机理构建多肽荧光探针用于可视化Zn2+结合SQSTM1/p62调节自噬在前列腺癌去势耐受中的作用机制
  • 批准号:
    82303568
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
手性氢键供体与阴离子结合催化乙烯基醚的立体选择性阳离子聚合
  • 批准号:
    22301279
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
  • 批准号:
    10752555
  • 财政年份:
    2024
  • 资助金额:
    $ 43.27万
  • 项目类别:
Decoding the functional pleiotropy of IL-20Rβ ligands in inflammation and tumorigenesis
解码 IL-20Rβ 配体在炎症和肿瘤发生中的功能多效性
  • 批准号:
    10350447
  • 财政年份:
    2023
  • 资助金额:
    $ 43.27万
  • 项目类别:
eCD4-mediated control of SIV infection in the brain
eCD4 介导的脑部 SIV 感染控制
  • 批准号:
    10698442
  • 财政年份:
    2023
  • 资助金额:
    $ 43.27万
  • 项目类别:
Disrupting Dogma: Investigating LPS Biosynthesis Inhibition as an Alternative Mechanism of Action of Aminoglycoside Antibiotics
颠覆教条:研究 LPS 生物合成抑制作为氨基糖苷类抗生素的替代作用机制
  • 批准号:
    10653587
  • 财政年份:
    2023
  • 资助金额:
    $ 43.27万
  • 项目类别:
Genetic adjuvants to elicit neutralizing antibodies against HIV
基因佐剂可引发抗艾滋病毒中和抗体
  • 批准号:
    10491642
  • 财政年份:
    2023
  • 资助金额:
    $ 43.27万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了