A Lexicon of Stapled Peptide Helices Engineered to Capture the Protein Interactom
旨在捕获蛋白质相互作用的钉合肽螺旋词典
基本信息
- 批准号:7937806
- 负责人:
- 金额:$ 43.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-30 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffinityBindingBinding SitesBiologicalBiologyCatalogingCatalogsCellsChemicalsChemistryClinicalDiseaseDisease PathwayDrug DesignDrug InteractionsEngineeringGoalsHealthHumanHydrocarbonsImmobilizationImplantLinkMediatingMedicineMolecularMolecular StructureNaturePeptidesProteinsProteomicsRecreationResearch InfrastructureSeminalShapesSiteSpecificityTechnologyTherapeutic InterventionTooth structureTranslationsbasegrasphigh throughput technologyin vivointercalationinterdisciplinary approachnovelpeptide structureprotein complexpublic health relevanceresearch study
项目摘要
DESCRIPTION (provided by applicant): Whether fleeting or stable, normal or aberrant, protein interactions and their sites of contact form the basis for discovery of biological pathways, disease mechanisms, and opportunities for therapeutic intervention. The goal of this proposal is to intertwine chemistry, biology, and medicine to create a transformative high- throughput technology that precisely identifies protein targets and their explicit sites of interaction. Like the teeth of a key that perfectly fit into a lock, complementary protein shape is critical to the execution of biological interactions. The molecular handshakes of proteins rely on their discrete substructures and these contact points are typically embedded within a complex protein that provides the infrastructure to maintain the essential bioactive fold. Ideally, these evolutionarily honed substructures could be used to capture and thereby catalogue their protein targets; however, out of context from the whole protein, bioactive subdomains often unfold, resulting in loss of biological shape, potency, and specificity. To reclaim the enormous capacity of structured peptides to selectively bind and capture their protein targets, we will first restore their bioactive shape and then chemically derivatize them for both non-covalent and covalent capture. In this proposal, we focus on the peptide 1-helix, arguably the most ubiquitous and versatile biological shape harnessed by the cell. We will apply our robust "hydrocarbon stapling" technology to synthesize a diversity of bioactive 1-helices and then chemically install new immobilization and intercalating functionalities to expand our grasp of the interactome by trapping the full-range of stable to transient protein interactors. Our covalent capture chemistry and proteomic analyses afford a two-for-one advantage: identification of protein targets and their sites of interaction. Since protein interaction sites are the topographic templates for drug design, we believe that the binding site identification feature of our approach will provide a critical link between interactome discovery and clinical translation. To accomplish our goals, we will take a step-wise approach: (1) structural stabilization, (2) directional affinity capture, (3) covalent capture, and (4) binding site identification. Each step will be adapted for high-throughput and validated using proof-of-concept biological experiments. Once identified and catalogued, protein interactions must be validated biologically. A seminal feature of our approach is that the very 1-helices we use to capture the protein interactome can be used to validate and drug the interactions in cellular and in vivo studies. Thus, we believe that engineering stapled peptides for protein capture will create a powerful and versatile approach to elucidating the interactome, and massively expand the potential for discovery of novel interactions and how they impact health and disease.
PUBLIC HEALTH RELEVANCE: Protein interactions mediate innumerable cellular activities in health and disease; our goal is to create a transformative high-throughput technology that rapidly and precisely identifies protein targets and their explicit sites of interaction. The novelty of our multidisciplinary approach begins with the chemical recreation of protein substructures that mediate protein interaction, transforming Nature's evolutionarily-honed binding motifs into a discovery toolbox; next, we chemically implant in these bioactive structures molecular functionalities for immobilization and irreversible protein intercalation. By operating at the interface of chemistry, biology, and medicine, we aim to develop and deploy a technology that surmounts the formidable challenge of identifying, distinguishing, and drugging the broad array of human protein targets.
描述(由申请人提供):无论是短暂的还是稳定的、正常的还是异常的,蛋白质相互作用及其接触位点构成了发现生物途径、疾病机制和治疗干预机会的基础。该提案的目标是将化学、生物学和医学结合起来,创建一种变革性的高通量技术,精确识别蛋白质靶点及其明确的相互作用位点。就像钥匙的齿可以完美地插入锁一样,互补的蛋白质形状对于生物相互作用的执行至关重要。蛋白质的分子握手依赖于它们离散的子结构,这些接触点通常嵌入复杂的蛋白质中,为维持必要的生物活性折叠提供基础设施。理想情况下,这些经过进化磨练的子结构可用于捕获并从而对它们的蛋白质目标进行分类;然而,脱离整个蛋白质的背景,生物活性子结构域通常会展开,导致生物形状、效力和特异性的丧失。为了恢复结构化肽选择性结合和捕获其蛋白质靶标的巨大能力,我们将首先恢复其生物活性形状,然后对它们进行化学衍生以进行非共价和共价捕获。在这项提案中,我们重点关注肽 1-螺旋,它可以说是细胞利用的最普遍、最通用的生物形状。我们将应用我们强大的“烃装订”技术来合成多种生物活性 1-螺旋,然后通过化学方法安装新的固定和嵌入功能,通过捕获全方位的稳定到瞬时蛋白质相互作用来扩展我们对相互作用组的掌握。我们的共价捕获化学和蛋白质组分析具有二合一的优势:鉴定蛋白质靶标及其相互作用位点。由于蛋白质相互作用位点是药物设计的拓扑模板,我们相信我们方法的结合位点识别特征将提供相互作用组发现和临床转化之间的关键联系。为了实现我们的目标,我们将采取逐步的方法:(1)结构稳定,(2)定向亲和捕获,(3)共价捕获,以及(4)结合位点识别。每个步骤都将针对高通量进行调整,并使用概念验证生物实验进行验证。一旦被识别和分类,蛋白质相互作用必须得到生物学验证。我们方法的一个重要特征是,我们用来捕获蛋白质相互作用组的 1-螺旋可用于验证和药物化细胞和体内研究中的相互作用。因此,我们相信,工程化用于蛋白质捕获的钉合肽将创建一种强大且通用的方法来阐明相互作用组,并极大地扩展发现新相互作用及其如何影响健康和疾病的潜力。
公共卫生相关性:蛋白质相互作用介导健康和疾病中无数的细胞活动;我们的目标是创造一种变革性的高通量技术,能够快速、精确地识别蛋白质靶标及其明确的相互作用位点。我们的多学科方法的新颖性始于介导蛋白质相互作用的蛋白质亚结构的化学重建,将大自然经过进化磨练的结合基序转变为发现工具箱;接下来,我们通过化学方法在这些生物活性结构中植入分子功能,以实现固定化和不可逆的蛋白质嵌入。通过化学、生物学和医学的结合,我们的目标是开发和部署一种技术,克服识别、区分和药物化广泛的人类蛋白质靶标的艰巨挑战。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Loren David Walensky其他文献
Loren David Walensky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Loren David Walensky', 18)}}的其他基金
Conformational Regulation and Therapeutic Targeting of Oncogenic KRAS
致癌 KRAS 的构象调控和治疗靶向
- 批准号:
10549717 - 财政年份:2019
- 资助金额:
$ 43.27万 - 项目类别:
Biophysical and Mechanistic Determinants for Cancer Cell Import of Hydrocarbon-Stapled Peptides
癌细胞输入碳氢化合物肽的生物物理和机制决定因素
- 批准号:
9178990 - 财政年份:2016
- 资助金额:
$ 43.27万 - 项目类别:
Dissecting and Targeting Deregulated Mitochondrial Apoptosis in Human Cancer
剖析和靶向人类癌症中失调的线粒体凋亡
- 批准号:
9321122 - 财政年份:2015
- 资助金额:
$ 43.27万 - 项目类别:
Dissecting and Targeting Deregulated Mitochondrial Apoptosis in Human Cancer
剖析和靶向人类癌症中失调的线粒体凋亡
- 批准号:
10474551 - 财政年份:2015
- 资助金额:
$ 43.27万 - 项目类别:
Dissecting and Targeting Deregulated Mitochondrial Apoptosis in Human Cancer
剖析和靶向人类癌症中失调的线粒体凋亡
- 批准号:
10669117 - 财政年份:2015
- 资助金额:
$ 43.27万 - 项目类别:
Dissecting and Targeting Deregulated Mitochondrial Apoptosis in Human Cancer
剖析和靶向人类癌症中失调的线粒体凋亡
- 批准号:
8955883 - 财政年份:2015
- 资助金额:
$ 43.27万 - 项目类别:
Dissecting and Targeting Deregulated Mitochondrial Apoptosis in Human Cancer
剖析和靶向人类癌症中失调的线粒体凋亡
- 批准号:
9977962 - 财政年份:2015
- 资助金额:
$ 43.27万 - 项目类别:
Dissecting and Targeting Deregulated Mitochondrial Apoptosis in Human Cancer
剖析和靶向人类癌症中失调的线粒体凋亡
- 批准号:
10299794 - 财政年份:2015
- 资助金额:
$ 43.27万 - 项目类别:
A Lexicon of Stapled Peptide Helices Engineered to Capture the Protein Interactom
旨在捕获蛋白质相互作用的钉合肽螺旋词典
- 批准号:
8137168 - 财政年份:2009
- 资助金额:
$ 43.27万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
利用分子装订二硫键新策略优化改造α-芋螺毒素的研究
- 批准号:82104024
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CST蛋白复合体在端粒复制中对端粒酶移除与C链填补调控的分子机制研究
- 批准号:31900521
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Wdr47蛋白在神经元极化中的功能及作用机理的研究
- 批准号:31900503
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 43.27万 - 项目类别:
Decoding the functional pleiotropy of IL-20Rβ ligands in inflammation and tumorigenesis
解码 IL-20Rβ 配体在炎症和肿瘤发生中的功能多效性
- 批准号:
10350447 - 财政年份:2023
- 资助金额:
$ 43.27万 - 项目类别:
eCD4-mediated control of SIV infection in the brain
eCD4 介导的脑部 SIV 感染控制
- 批准号:
10698442 - 财政年份:2023
- 资助金额:
$ 43.27万 - 项目类别:
Disrupting Dogma: Investigating LPS Biosynthesis Inhibition as an Alternative Mechanism of Action of Aminoglycoside Antibiotics
颠覆教条:研究 LPS 生物合成抑制作为氨基糖苷类抗生素的替代作用机制
- 批准号:
10653587 - 财政年份:2023
- 资助金额:
$ 43.27万 - 项目类别:
Genetic adjuvants to elicit neutralizing antibodies against HIV
基因佐剂可引发抗艾滋病毒中和抗体
- 批准号:
10491642 - 财政年份:2023
- 资助金额:
$ 43.27万 - 项目类别: