Cell cycle timing and molecular mechanisms of structural variant formation following incomplete replication
不完全复制后结构变异形成的细胞周期时间和分子机制
基本信息
- 批准号:10656861
- 负责人:
- 金额:$ 51.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-12 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:Automobile DrivingBRCA2 geneBiological ModelsCRISPR/Cas technologyCell Culture TechniquesCell CycleCell Cycle StageCell FractionCell LineageCellsChemicalsChromosomal RearrangementChromosome Fragile SitesCopy Number PolymorphismDNADNA RepairDNA Repair PathwayDNA Synthesis InhibitionDNA biosynthesisDataDedicationsDouble Strand Break RepairEventFANCD2 proteinFailureFrequenciesFunctional disorderGenesGenetic DiseasesGenetic TranscriptionGenomeGenomic SegmentGenomic approachGenomicsGerm-Line MutationGoalsHereditary DiseaseHeritabilityHumanHuman GeneticsHuman GenomeKnock-outKnowledgeLinkLiteratureMalignant NeoplasmsMediatingMeiosisMethodsMissionMitosisMitoticMitotic M PhaseModelingMolecularMonitorMutagenesisMutationOutcomePathway interactionsPatternPublic HealthRAD52 geneReportingResolutionRiskRoleS phaseSamplingSmall Interfering RNASortingStressSystemTechnologyTestingTimeTissuesUnited States National Institutes of HealthVariantWorkgenetic informationgenome-widegenomic locusinsightmutantnovelpreservationpreventreplication stressresponsesmall hairpin RNAstem cellstransmission processwhole genome
项目摘要
Project Summary / Abstract
Mutagenesis resulting from replication failure is a direct cause of tissue dysfunction and cancer when it occurs
in somatic tissues and of de novo and inherited genetic diseases when it occurs in gametogenic stem cells or
meiosis. A primary mutagenic outcome of replication failure is structural variant (SV) formation, especially copy
number variants (CNVs), which create large changes in genomic content in single mutational steps. Fundamental
gaps in knowledge exist regarding the DNA repair mechanisms that lead to SV formation. While multiple
mechanisms may be involved, models that derive from template switching, break-induced replication (BIR), and
other forms of double-strand break (DSB) repair have been forwarded to account for a large proportion of human
CNVs but lack direct experimental evidence. Our prior work has shown that incomplete replication leads to a
high frequency of CNVs in human cells, with hotspots in large, transcribed genes corresponding to common
fragile sites (CFSs) that provide a model system for characterizing SV formation mechanisms.
Recent literature has revealed much about the damage response pathways that promote proper completion
of replication. One finding was Mitotic DNA Synthesis (MiDAS), where failed replication in S is rescued by a
conservative form of replication activated as late as mitosis. As a BIR-like pathway, MiDAS accuracy is thought
to be low such that the temporal association between MiDAS and CFS expression suggests a potential
mechanistic link to SV formation. Our major goals are to explore the relationships between replication rescue,
end-joining, BIR, other forms of DSB repair, and SV formation, how CFS expression relates to CNV formation,
and how extensible observations at CFS/CNV hotspot loci are to SV formation genome wide. Our central
hypothesis is that hotspot CNV formation occurs during replication rescue, either via MiDAS or an alternative
pathway to MiDAS, notably, theta-mediated end joining (TMEJ). A driving rationale is that we must monitor SV
formation in real time as a primary experimental outcome, something we have been uniquely dedicated to doing.
Our approach will therefore apply our recent technology advances for directly detecting rare SV junctions in
experimental samples to provide answers to longstanding questions about the origins of human SVs.
We will address our goals through three specific aims to (1) Identify the precise cell cycle stage(s) when
structural variants form following replication stress; (2) Establish the replication rescue and DNA repair pathways
that create structural variant junctions; and (3) Extend mitotic SV formation mechanisms from CFSs to the whole
genome and BRCA2 deficiency. The combination is significant as it will provide direct experimental tests of the
mechanisms that execute SV formation in at-risk genomic loci and extend those findings to multiple genomic
regions and cell lineages relevant to both somatic and heritable germline mutagenesis.
项目概要/摘要
复制失败引起的突变是组织功能障碍和癌症发生的直接原因
当它发生在配子干细胞或
减数分裂。复制失败的主要诱变结果是结构变异(SV)的形成,尤其是复制
数字变异(CNV),在单个突变步骤中使基因组内容产生巨大变化。基本的
关于导致 SV 形成的 DNA 修复机制存在知识空白。虽然多个
可能涉及机制、源自模板切换、断裂诱导复制 (BIR) 的模型以及
其他形式的双链断裂(DSB)修复已在人类中占很大比例
CNV但缺乏直接的实验证据。我们之前的工作表明,不完整的复制会导致
人类细胞中出现高频率的 CNV,热点位于与常见基因相对应的大型转录基因中
脆弱位点 (CFS) 提供了表征 SV 形成机制的模型系统。
最近的文献揭示了许多有关促进正确完成的损伤反应途径的信息
的复制。一项发现是有丝分裂 DNA 合成 (MiDAS),其中 S 中的复制失败由一个
保守的复制形式晚至有丝分裂才被激活。作为类似 BIR 的通路,MiDAS 的准确性被认为
低,使得 MiDAS 和 CFS 表达之间的时间关联表明潜在的
与 SV 形成的机制联系。我们的主要目标是探索复制拯救之间的关系,
末端连接、BIR、其他形式的 DSB 修复和 SV 形成、CFS 表达如何与 CNV 形成相关,
以及 CFS/CNV 热点基因座的观察结果如何扩展到基因组范围内的 SV 形成。我们的中央
假设热点 CNV 形成发生在复制救援期间,通过 MiDAS 或替代方案
MiDAS 的途径,特别是 theta 介导的末端连接 (TMEJ)。一个重要的理由是我们必须监控 SV
实时形成作为主要实验结果,这是我们一直致力于做的事情。
因此,我们的方法将应用我们最新的技术进步来直接检测罕见的 SV 连接
实验样本为有关人类 SV 起源的长期问题提供答案。
我们将通过三个具体目标来实现我们的目标:(1) 确定精确的细胞周期阶段
复制压力后形成结构变异; (2) 建立复制拯救和DNA修复途径
创建结构变异连接; (3) 将有丝分裂 SV 形成机制从 CFS 扩展到整个
基因组和 BRCA2 缺陷。这一组合意义重大,因为它将提供直接的实验测试
在有风险的基因组位点中执行 SV 形成并将这些发现扩展到多个基因组的机制
与体细胞和可遗传种系突变相关的区域和细胞谱系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
THOMAS W GLOVER其他文献
THOMAS W GLOVER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('THOMAS W GLOVER', 18)}}的其他基金
Extreme genomic instability at large transcribed genes: mechanisms and consequences for the cancer genome
大转录基因的极端基因组不稳定性:癌症基因组的机制和后果
- 批准号:
9173540 - 财政年份:2016
- 资助金额:
$ 51.65万 - 项目类别:
Extreme genomic instability at large transcribed genes: mechanisms and consequences for the cancer genome
大转录基因的极端基因组不稳定性:癌症基因组的机制和后果
- 批准号:
9336863 - 财政年份:2016
- 资助金额:
$ 51.65万 - 项目类别:
Extreme genomic instability at large transcribed genes: mechanisms and consequences for the cancer genome
大转录基因的极端基因组不稳定性:癌症基因组的机制和后果
- 批准号:
9756149 - 财政年份:2016
- 资助金额:
$ 51.65万 - 项目类别:
De novo CNV formation in vivo with sickle cell anemia therapy
镰状细胞性贫血治疗体内从头形成 CNV
- 批准号:
8775671 - 财政年份:2012
- 资助金额:
$ 51.65万 - 项目类别:
De novo CNV formation in vivo with sickle cell anemia therapy
镰状细胞性贫血治疗体内从头形成 CNV
- 批准号:
8415873 - 财政年份:2012
- 资助金额:
$ 51.65万 - 项目类别:
De novo CNV formation in vivo with sickle cell anemia therapy
镰状细胞性贫血治疗体内从头形成 CNV
- 批准号:
8219623 - 财政年份:2012
- 资助金额:
$ 51.65万 - 项目类别:
De novo CNV formation in vivo with sickle cell anemia therapy
镰状细胞性贫血治疗体内从头形成 CNV
- 批准号:
8578098 - 财政年份:2012
- 资助金额:
$ 51.65万 - 项目类别:
Environmental Risk Factors for Copy Number Variation in Human Chromosomes
人类染色体拷贝数变异的环境风险因素
- 批准号:
7941810 - 财政年份:2009
- 资助金额:
$ 51.65万 - 项目类别:
Environmental Risk Factors for Copy Number Variation in Human Chromosomes
人类染色体拷贝数变异的环境风险因素
- 批准号:
7817619 - 财政年份:2009
- 资助金额:
$ 51.65万 - 项目类别:
Environmental Risk Factors for Copy Number Variation in Human Chromosomes
人类染色体拷贝数变异的环境风险因素
- 批准号:
7941810 - 财政年份:2009
- 资助金额:
$ 51.65万 - 项目类别:
相似国自然基金
DNA同源重组基因EXO1和BRCA2在早发性卵巢功能不全发病中的作用和致病机制研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
BRCA2基因新突变导致的甲基缺失引起高危家族卵巢/乳腺癌发生的机制研究
- 批准号:81972444
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
中国家族性乳腺癌BRCA1/2基因大片段重排断裂位点鉴定及功能研究
- 批准号:81772824
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
BRCA2基因肿瘤抑制新机制:抑制中心体过度复制
- 批准号:30771110
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
BACP1-BRCA2相互作用及其有丝分裂调控的研究
- 批准号:30470370
- 批准年份:2004
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
The role of PRMT5 in preventing intra-chromosomal deletions in cancer cells
PRMT5 在预防癌细胞染色体内缺失中的作用
- 批准号:
10728560 - 财政年份:2023
- 资助金额:
$ 51.65万 - 项目类别:
Common biology underlying pleiotropic breast, prostate and ovarian cancer risk loci
多效性乳腺癌、前列腺癌和卵巢癌风险位点的共同生物学基础
- 批准号:
10366397 - 财政年份:2022
- 资助金额:
$ 51.65万 - 项目类别:
Common biology underlying pleiotropic breast, prostate and ovarian cancer risk loci
多效性乳腺癌、前列腺癌和卵巢癌风险位点的共同生物学基础
- 批准号:
10684639 - 财政年份:2022
- 资助金额:
$ 51.65万 - 项目类别:
Single cell quantification of genomic instability in cancer as a determinant of therapeutic response
癌症基因组不稳定性的单细胞定量作为治疗反应的决定因素
- 批准号:
10115351 - 财政年份:2021
- 资助金额:
$ 51.65万 - 项目类别:
Single cell quantification of genomic instability in cancer as a determinant of therapeutic response
癌症基因组不稳定性的单细胞定量作为治疗反应的决定因素
- 批准号:
10357908 - 财政年份:2021
- 资助金额:
$ 51.65万 - 项目类别: