Patterns and predictors of viral suppression: A Big Data approach

病毒抑制的模式和预测因素:大数据方法

基本信息

项目摘要

Abstract/Summary Sustained viral suppression, an indicator of long-term treatment success and mortality reduction, is one of four strategic areas of the “Ending the HIV Epidemic (EtHE): A Plan for America” federal campaign launched in 2019. Underrepresented populations, such as racial or ethnic minority populations, sexual and gender minority groups, and socioeconomically disadvantaged populations are usually disproportionately affected by HIV and subsequently experience a more striking virological failure. The COVID-19 pandemic is affecting People living with HIV (PLWH) in unique ways. It reveals the more apparent systemic inequities of HIV care due to the exacerbated preexisting structural disparities among underrepresented populations and consequently puts the already vulnerable populations at increased risk of worse HIV outcomes, including viral suppression. The parent grant (R01 AI164947) funded in 2021 aims to examine the longitudinal dynamic pattern of viral suppression, develop optimal predictive models of various viral suppression indicators, and translate the models to service-ready tools for clinical use using the South Carolina (SC) statewide HIV electronic health record (EHR) data. However, the SC statewide HIV database, a real-world data, cannot capture an adequate sample of underrepresented populations due to their historically limited access to specialty care and academic medical centers that serve as the primary sources for EHR data. The All of Us Research Program, a national historic effort supported by the NIH, aims to recruit a broad diverse group of the US population with more than 50% of the participants from racial and ethnic minority groups and more than 80% from populations historically underrepresented in biomedical research. The All of Us Research Program is harmonizing data from multiple sources on an ongoing basis and currently it has recruited ~4800 PLWH with a series of self- reported survey data (e.g., Lifestyle, Healthcare Access, COVID-19 Participant Experience) and relevant longitudinal EHR data (laboratory and medication). Given the limitations of the parent grant (R01 AI164947), this administrative supplement expands the parent grant to target a broadly defined underrepresented HIV population and develop a personalized viral suppression prediction model using machine learning techniques by incorporating multilevel factors (e.g., COVID-19 interruption, psychological wellbeing, healthcare utilization, and social environmental factors) using All of Us big data resources. The availability of comprehensive phenotypic data and the Researcher Workbench in All of Us platform fully assures the transparency and reproducibility of the proposed project and thus increases the generalizability of research findings. The proposed personalized viral suppression prediction can provide data driven evidence on tailored HIV treatment strategies to different underrepresented populations particularly in the face of the unexpected interruptions like the COVID-19 pandemic, and eventually serve towards the goal of ending the HIV epidemic in the US.
摘要/总结 持续的病毒抑制是长期治疗成功和死亡率降低的指标,是四个指标之一 “结束艾滋病毒流行(EtHE):美国计划”联邦运动的战略领域 2019. 代表性不足的人群,例如种族或族裔少数群体、性少数群体和性别少数群体 群体和社会经济弱势群体通常不成比例地受到艾滋病毒和 随后经历了更引人注目的病毒学失败,COVID-19 大流行正在影响人们。 它以独特的方式揭示了艾滋病毒护理的更明显的系统性不平等。 加剧了代表性不足的人口中先前存在的结构性差异,从而使 本来就脆弱的人群面临更严重的艾滋病毒后果(包括病毒抑制)的风险增加。 2021 年资助的家长补助金 (R01 AI164947) 旨在研究病毒的纵向动态模式 抑制,开发各种病毒抑制指标的预测最佳模型,并将 使用南卡罗来纳州 (SC) 居民 HIV 电子健康的模型到可供临床使用的服务就绪工具 然而,SC 流行的艾滋病毒数据库(真实世界的数据)无法捕获足够的数据。 由于历史上获得专业护理和学术机会有限而代表性不足的人群样本 作为 EHR 数据主要来源的医疗中心,这是一项国家级研究计划。 美国国立卫生研究院 (NIH) 支持的历史性努力旨在招募广泛多样化的美国人口群体,并提供更多信息 超过 50% 的参与者来自种族和族裔群体,超过 80% 的参与者来自人口 历史上在生物医学研究中代表性不足的“我们所有人研究计划”正在协调数据。 持续从多个来源招募,目前已通过一系列自我招募招募了约 4800 名感染者 报告的调查数据(例如,生活方式、医疗保健获取、COVID-19 参与者体验)和相关 纵向 EHR 数据(实验室和药物)。鉴于家长补助金 (R01 AI164947) 的限制, 该行政补充扩大了家长补助金,以针对广泛定义的代表性不足的艾滋病毒 人口并使用机器学习技术开发个性化病毒抑制预测模型 通过纳入多层次因素(例如,COVID-19 中断、心理健康、医疗保健 利用我们所有人的大数据资源。 全面的表型数据和 All of Us 平台中的研究人员工作台充分保证 拟议项目的透明度和可重复性,从而提高研究的普遍性 所提出的个性化病毒抑制预测可以提供定制的数据驱动证据。 针对不同代表性不足人群的艾滋病毒治疗策略,特别是面对意外情况时 像 COVID-19 大流行这样的中断,最终有助于结束艾滋病毒流行的目标 在美国。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bankole Olatosi其他文献

Bankole Olatosi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bankole Olatosi', 18)}}的其他基金

Patterns and predictors of viral suppression: A Big Data approach
病毒抑制的模式和预测因素:大数据方法
  • 批准号:
    10828961
  • 财政年份:
    2023
  • 资助金额:
    $ 9.31万
  • 项目类别:
Patterns and predictors of viral suppression: A Big Data approach
病毒抑制的模式和预测因素:大数据方法
  • 批准号:
    10425449
  • 财政年份:
    2021
  • 资助金额:
    $ 9.31万
  • 项目类别:
Patterns and predictors of viral suppression: A Big Data approach
病毒抑制的模式和预测因素:大数据方法
  • 批准号:
    10890970
  • 财政年份:
    2021
  • 资助金额:
    $ 9.31万
  • 项目类别:
Patterns and predictors of viral suppression: A Big Data approach
病毒抑制的模式和预测因素:大数据方法
  • 批准号:
    10321732
  • 财政年份:
    2021
  • 资助金额:
    $ 9.31万
  • 项目类别:
Patterns and predictors of viral suppression: A Big Data approach
病毒抑制的模式和预测因素:大数据方法
  • 批准号:
    10622620
  • 财政年份:
    2021
  • 资助金额:
    $ 9.31万
  • 项目类别:
An ethical framework-guided metric tool for assessing bias in EHR-based Big Data studies
一种道德框架指导的度量工具,用于评估基于电子病历的大数据研究中的偏差
  • 批准号:
    10599459
  • 财政年份:
    2021
  • 资助金额:
    $ 9.31万
  • 项目类别:

相似海外基金

Vanderbilt Genome-Electronic Records (VGER) Project
范德比尔特基因组电子记录 (VGER) 项目
  • 批准号:
    10771648
  • 财政年份:
    2023
  • 资助金额:
    $ 9.31万
  • 项目类别:
Cardioembolism as a Mechanism of Central Retinal Artery Occlusion
心源性栓塞作为视网膜中央动脉闭塞的机制
  • 批准号:
    10773701
  • 财政年份:
    2022
  • 资助金额:
    $ 9.31万
  • 项目类别:
PedGeneRx - Admin Supplement to Base Editing and Prime Editing for Sickle Cell Disease R01
PedGeneRx - 镰状细胞病 R01 碱基编辑和 Prime 编辑的管理补充
  • 批准号:
    10594247
  • 财政年份:
    2021
  • 资助金额:
    $ 9.31万
  • 项目类别:
Continuation of the NuMoM2b Heart Health Study
NuMoM2b 心脏健康研究的延续
  • 批准号:
    10288873
  • 财政年份:
    2020
  • 资助金额:
    $ 9.31万
  • 项目类别:
Improving Assessment for Neurocognitive Impairment Among Older Adults with Alzheimer's Disease and Related Dementias
改进对患有阿尔茨海默病和相关痴呆症的老年人的神经认知损伤的评估
  • 批准号:
    10094688
  • 财政年份:
    2018
  • 资助金额:
    $ 9.31万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了