Flu Vaccine Production Using a Novel Pandemic Response and Prevention Manufacturing Method
使用新型流行病应对和预防制造方法生产流感疫苗
基本信息
- 批准号:10698431
- 负责人:
- 金额:$ 29.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVAddressAirAlveolarAnimal ModelAnimalsAntibody FormationAntibody titer measurementAntigen PresentationAntigen TargetingAntigensAttentionBiological AssayBloodBlood specimenCOVID-19COVID-19 vaccineChemicalsColoradoCyclic GMPDevelopmentDiseaseDoseEnzyme-Linked Immunosorbent AssayEnzymesEvaluationFaceFerretsFormalinFormulationGeneral PopulationGenetic MaterialsGeographyGrowthHealthcare SystemsHemagglutininHistopathologyImmunizationIn VitroInactivated VaccinesIndividualInfectionInfluenzaInfluenza A Virus, H1N1 SubtypeInfluenza A Virus, H3N2 SubtypeInfluenza A virusInfluenza B VirusIntramuscularKineticsLectinLinkLungLymphocytic InfiltrateMethodsModelingMolecular ConformationMusNasal turbinate bone structureNeuraminidaseNeutralization TestsNoseNucleoproteinsPhasePhotosensitizing AgentsPlaque AssayPoisonProcessProductionProtein AnalysisProteinsResourcesRespiratory SystemRiboflavinRiskSafetySamplingSmall Business Innovation Research GrantSpeedSystemTechnologyTestingTissuesTracheaTrademarkUltraviolet RaysUnited States National Institutes of HealthUniversitiesVaccinatedVaccine ProductionVaccinesVariantVascular blood supplyViralViral AntigensViral Load resultViral ProteinsVirionVirusWeightWorkantibody testcostefficacy evaluationefficacy studyflexibilityglobal healthimprovedin vivoinfluenza virus vaccineinfluenzavirusmanufacturemanufacturing process developmentneutrophilnew pandemicnovel vaccinespandemic diseasepandemic influenzapandemic potentialpandemic responsepathogenpreservationprevent pandemicsrespiratorytechnology platformvaccine candidatevaccine developmentvaccine evaluationvaccine immunogenicity
项目摘要
PROJECT SUMMARY/ABSTRACT
The current global pandemic has highlighted the need to develop new methods for creating vaccines. Many
approaches today face limitations with breadth and duration of protection; flexibility and adaptability for emerging
strains; manufacturing speed and safety; and storage and distribution. SolaVAX™ inactivation technology offers
an elegant solution for quickly generating highly effective vaccines by using a combination of a photosensitizer
(riboflavin/vitamin B2) and UV light to disrupt pathogen genetic material while preserving target antigens. Likely
advantages of SolaVAX-derived vaccines include: more complete antigen presentation using whole pathogens;
multiple virus strains/ multiple antigen variants, i.e. multivalent; rapid manufacturing pivot to address emergent
strains; no toxic inactivating chemicals that potentially compromise antigen conformation and add to
manufacturing complexity; low cost, geographically distributed manufacturing; applicable to viral, bacterial and
parasitic pathogens. In recent work supported by BARDA and NIH, Drs. Raymond Goodrich and Izabela Ragan
demonstrated that a SolaVAX™-SARS-CoV-2 vaccine dramatically decreased viral load, reduced lymphocytic
infiltration and neutrophil accumulation, and maintained lung alveolar air space after virus exposure. From these
studies, the SolaVAX™-SARS-CoV-2 investigational vaccine is estimated to be up to 20,000x more effective on
a weight/weight basis of dose compared to other inactivation methods.
This SBIR project will focus on the evaluation of the SolaVAX approach for creating improved influenza vaccines
composed of whole inactivated virions. Although global attention has been focused on COVID-19 since 2020,
the pandemic threat of influenza still exists. Moreover, the risk of a pandemic influenza may be exacerbated by
SARS-CoV-2, given the burden on global healthcare systems and increased number of individuals with pre-
existing conditions, such as compromised respiratory systems. Current flu vaccines provide sub-optimal
protection (40-60%) and improved approaches for multi-strain and/or universal protection are needed. In
promising preliminary in vitro studies, a SolaVAX-generated influenza vaccine provided 70-80% retention of
hemagglutinin (HA) activity, as compared to 40-45% after inactivation by formalin. Phase I of this project will
build on these studies to establish the vaccine development process that yields full inactivation with maximal
antigen integrity (AIM 1). Then, we will evaluate inactivated vaccine for immunogenicity in mice (AIM 2) and
efficacy against live viral challenge in ferret (AIM 3).
项目概要/摘要
当前的全球大流行凸显了开发制造疫苗的新方法的必要性。
当今的方法面临保护广度和持续时间的限制;
菌株;生产速度和安全性;以及 SolaVAX™ 灭活技术。
通过使用光敏剂组合快速生成高效疫苗的优雅解决方案
(核黄素/维生素 B2)和紫外线可能会破坏病原体遗传物质,同时保留目标抗原。
SolaVAX 衍生疫苗的优点包括: 使用完整病原体进行更完整的抗原呈递;
多种病毒株/多种抗原变体,即多价快速制造,以应对紧急情况;
菌株;没有有毒的灭活化学物质,可能会损害抗原构象并增加
制造复杂性;低成本、地理分布制造;适用于病毒、细菌和
在 BARDA 和 NIH 的支持下,Raymond Goodrich 和 Izabela Ragan 博士最近的工作。
证明 SolaVAX™-SARS-CoV-2 疫苗可显着降低病毒载量,减少淋巴细胞
浸润和中性粒细胞积聚,并在病毒暴露后维持肺泡空气空间。
研究表明,SolaVAX™-SARS-CoV-2 研究疫苗的有效性估计提高了 20,000 倍
与其他灭活方法相比,剂量的重量/重量基础。
该 SBIR 项目将重点评估用于改进流感疫苗的 SolaVAX 方法
尽管自 2020 年以来全球注意力一直集中在 COVID-19 上,
流感大流行的威胁依然存在,而且流感大流行的风险可能会加剧。
考虑到全球医疗保健系统的负担以及患有新冠肺炎的人数增加,SARS-CoV-2
现有的条件,例如受损的呼吸系统,目前的流感疫苗效果不佳。
需要保护(40-60%)和改进的多菌株和/或通用保护方法。
初步体外研究显示,SolaVAX 生成的流感疫苗具有 70-80% 的保留率
与福尔马林灭活后的 40-45% 相比,该项目的血凝素 (HA) 活性将下降。
以这些研究为基础,建立疫苗开发过程,以最大程度地实现完全灭活
然后,我们将评估灭活疫苗在小鼠中的免疫原性(AIM 2)和
对雪貂活病毒攻击的功效(AIM 3)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Izabela Ragan其他文献
Izabela Ragan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Chitin and chitinases in SARS-CoV-2 infection
SARS-CoV-2 感染中的几丁质和几丁质酶
- 批准号:
10742004 - 财政年份:2023
- 资助金额:
$ 29.89万 - 项目类别:
Mitigation of ventilation-based resuspension and spread of airborne viruses in nosocomial and healthcare settings
减轻医院和医疗机构中基于通气的空气传播病毒的再悬浮和传播
- 批准号:
10668064 - 财政年份:2023
- 资助金额:
$ 29.89万 - 项目类别:
Development of a handheld rapid air sensing system to monitor and quantify SARS-CoV-2 in aerosols in real-time
开发手持式快速空气传感系统,实时监测和量化气溶胶中的 SARS-CoV-2
- 批准号:
10854070 - 财政年份:2023
- 资助金额:
$ 29.89万 - 项目类别:
Impact of benzene-induced MIA on fetal T cell development
苯诱导的 MIA 对胎儿 T 细胞发育的影响
- 批准号:
10605881 - 财政年份:2023
- 资助金额:
$ 29.89万 - 项目类别:
Background Oriented Schlieren (BOS) Visualization for Evaluation of Risk in Aerosol-Generating Procedures
用于评估气溶胶生成程序风险的背景导向纹影 (BOS) 可视化
- 批准号:
10354549 - 财政年份:2022
- 资助金额:
$ 29.89万 - 项目类别: