Mitigation of ventilation-based resuspension and spread of airborne viruses in nosocomial and healthcare settings
减轻医院和医疗机构中基于通气的空气传播病毒的再悬浮和传播
基本信息
- 批准号:10668064
- 负责人:
- 金额:$ 18.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-26 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoV3-DimensionalAddressAerosolsAffectAirAir MovementsAnimalsAreaCattleCell Culture TechniquesCharacteristicsChinaCirculationCollectionCommunicable DiseasesComputer ModelsCoronavirusDataDepositionDevelopmentDiseaseEffectivenessEngineeringEnvironmentEnvironmental ImpactEnvironmental Risk FactorExperimental ModelsExposure toGoalsGuidelinesHealth care facilityHospitalsHourHumanHumidityIncidenceIntakeInterferometryKnowledgeLiquid substanceLocationMeasurementMeasuresMechanicsMethodsModelingMolecularMolecular ComputationsMonitorOrganismPathway interactionsPatternPersonsPlayPolymerase Chain ReactionProcessPropertyResearchRoleRouteSamplingScientistSourceStreamSurfaceSuspensionsSystemTemperatureTestingViralVirionVirusVisualizationaerosolizedair samplingbetacoronavirusbuilt environmentdesigndisease transmissionexhaustfield studyhealth care settingshuman coronavirusimprovedinnovationmicroorganismmolecular dynamicsnovelpandemic diseaseparticlepathogenprogramssimulationtransmission processventilationviral transmission
项目摘要
Project Summary/Abstract
Viral transmission from an infected person or an animal to a new host can occur by direct or indirect routes.
During indirect transmission, contaminated surfaces can play an important role. Although there are a number of
methods for disease transmission in healthcare facilities, aerial transmission is often considered an important
route for many organisms. The aerial path followed by pathogens from the source to recipients or surfaces and
their viability upon impaction is affected by many factors, including room air exchange rates and air properties
that may further challenge aerosolized bioparticles, including viruses. As ventilation systems are practically
ubiquitous in the build environment, the effect of air properties on the infectivity and transport of aerosolized
viruses is an important topic for study to reduce the spread of infectious viral particles.
The proposed project is the first known comprehensive study on the impact of environmental conditions
including temperature, humidity, and air velocity on the droplet size, spread, and
deposition/resuspension of airborne viruses. The optimization of environmental conditions that lead to
improved ventilation designs or mitigation strategies could significantly reduce the entrainment and spread of
viable infectious viruses in the built environment. The PIs' have previously shown that a combined modeling and
sampling approach is successful to mitigate transport of airborne infectious microorganisms in a ventilated facility
The goal of this proposal is to understand the effect of environmental conditions on the transmission, deposition
and resuspension of aerosolized virus particles and provide realistic measures to reduce their spread in the
ventilation airflow in nosocomial and healthcare settings. The proposed goal will be achieved by combining
betacoronavirus aerosol collection with biolayer interferometry, molecular dynamics and computational airflow
modeling in model experiments and field testing. The research plan is based on three fundamental questions
about 1) the effect of environmental conditions and surface characteristics on the size distribution, deposition,
and resuspension of virus aerosols using biolayer interferometry, molecular dynamics modeling and
computational flow simulation to visualize the airflow patterns in a 3 scale model hospital room. Elucidating the
relationship between viable virus deposition and resuspension is the key for developing means to reduce
transmission of viruses through airborne exposure; 2) using bioaerosol collectors to determine the rate and
distance aerosolized viruses can spread in different environmental conditions analyzed by cell culture and
quantitative polymerase chain reaction (qPCR); and 3) how mitigation efforts based on optimized ventilation can
be applied to hospital settings. This innovative project will help develop and implement interdisciplinary
ventilation design guidelines to educate scientists and engineers about bioaerosol transport and environmental
effects on the spread of viruses in an effort to improve understanding of infectious disease considerations in
design, management, and monitoring of healthcare facilities and other built environment.
项目概要/摘要
病毒从感染者或动物传播到新宿主可以通过直接或间接途径发生。
在间接传播过程中,受污染的表面可以发挥重要作用。虽然有不少
对于医疗机构中的疾病传播方法,空气传播通常被认为是一种重要的方法
许多生物体的途径。病原体从源头到受体或表面的空中路径以及
它们在撞击时的生存能力受到许多因素的影响,包括室内空气交换率和空气特性
这可能会进一步挑战包括病毒在内的雾化生物颗粒。由于通风系统实际上
在建筑环境中无处不在,空气特性对气溶胶的传染性和传播的影响
病毒是减少传染性病毒颗粒传播的一个重要研究课题。
拟议的项目是第一个已知的关于环境条件影响的综合研究
包括温度、湿度和气流速度对液滴尺寸、扩散和
空气传播病毒的沉积/再悬浮。环境条件的优化导致
改进的通风设计或缓解策略可以显着减少病毒的夹带和传播
建筑环境中存在活的传染性病毒。 PI 之前已经表明,组合建模和
采样方法成功地减少了通风设施中空气传播的传染性微生物的传播
该提案的目标是了解环境条件对传输、沉积的影响
和重新悬浮雾化病毒颗粒,并提供切实可行的措施来减少其在环境中的传播
医院和医疗机构中的通风气流。拟议的目标将通过结合来实现
利用生物层干涉测量、分子动力学和计算气流收集乙型冠状病毒气溶胶
模型实验和现场测试中的建模。该研究计划基于三个基本问题
1)环境条件和表面特性对粒径分布、沉积的影响,
使用生物层干涉测量、分子动力学建模和重新悬浮病毒气溶胶
计算流动模拟可可视化 3 比例模型医院病房中的气流模式。阐明
活病毒沉积和再悬浮之间的关系是开发减少病毒感染的方法的关键
通过空气传播病毒; 2) 使用生物气溶胶收集器来确定速率和
通过细胞培养和分析,雾化病毒可以在不同环境条件下传播的距离
定量聚合酶链反应(qPCR); 3) 基于优化通风的缓解措施如何能够
应用于医院环境。这个创新项目将有助于开发和实施跨学科
通风设计指南,向科学家和工程师提供有关生物气溶胶传输和环境的教育
对病毒传播的影响,以提高对传染病考虑因素的了解
医疗设施和其他建筑环境的设计、管理和监控。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Dobozi King其他文献
Maria Dobozi King的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
单一取向CsPbBr3一维光波导阵列在异质半导体低维结构上的面内集成及其在光电互联中的应用研究
- 批准号:62374057
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
Ti3C2Tx诱导锌金属负极表面三维重构及锌沉积调控新机制研究
- 批准号:52372236
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
本征二维磁性材料CrI3的缺陷原子结构与磁性关联研究
- 批准号:12304019
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
三维有序大/介孔稀土氧化物(La2O3和CeO2)负载Ru催化剂用于氨分解性能研究
- 批准号:52361040
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
应变调控二维磁性材料VX3的磁光拉曼研究
- 批准号:12304042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Immune-epithelial progenitor interactions drive age-associated dysplastic lung repair post viral pneumonia
免疫上皮祖细胞相互作用驱动病毒性肺炎后与年龄相关的发育不良肺修复
- 批准号:
10751699 - 财政年份:2023
- 资助金额:
$ 18.09万 - 项目类别:
Dissecting the drivers of persistent SARS-CoV-2 infections
剖析 SARS-CoV-2 持续感染的驱动因素
- 批准号:
10736007 - 财政年份:2023
- 资助金额:
$ 18.09万 - 项目类别:
Potential role of skin in SARS-CoV-2 infection
皮肤在 SARS-CoV-2 感染中的潜在作用
- 批准号:
10593622 - 财政年份:2023
- 资助金额:
$ 18.09万 - 项目类别:
Project 1 – Development of Orally Bioavailable beta-CoV Inhibitors
项目 1 — 口服生物可利用的 β-CoV 抑制剂的开发
- 批准号:
10513942 - 财政年份:2022
- 资助金额:
$ 18.09万 - 项目类别: