High-throughput high-resolution microscopy for phenotypic drug discovery applications
用于表型药物发现应用的高通量高分辨率显微镜
基本信息
- 批准号:10654145
- 负责人:
- 金额:$ 45.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAntineoplastic AgentsAntitumor Drug Screening AssaysApoptosisApoptoticArtificial IntelligenceAutophagocytosisAwardBiochemicalBiological AssayBiophysicsBuffersBullaBypassCOVID-19 pandemicCancer ModelCell DeathCell Death InductionCell Death ProcessCell NucleusCell modelCellsCellular MorphologyCellular biologyCessation of lifeCharacteristicsChemicalsChemotherapy and/or radiationClassificationClimateClinicClinical TrialsConsumptionCoupledDevelopmentDevicesDiagnosticDoxorubicinDrug ScreeningFirst Generation College StudentsGoalsHolographyHydrogen PeroxideImageIncubatedInduction of ApoptosisInhibition of ApoptosisInstitutionLabelLaboratoriesLightingMalignant NeoplasmsMeasurementMediatingMembraneMethodsMicroscopeMicroscopyMitoticModelingMolecularMorphologyMulti-Drug ResistanceNecrosisNeoplasm MetastasisOrganellesPathway interactionsPatientsPharmaceutical PreparationsPharmacologyPhasePhenotypePhysiologicalProcessPrognosisPropertyPublic HealthResearchResearch PersonnelResistanceResistance developmentResolutionRuptureScreening procedureSeriesSpeedTechnologyTestingTimeToxic effectTrainingTreatment FailureUnderrepresented MinorityUniversitiesVacuoleVisualizationanti-canceranticancer researchcancer cellcancer drug resistancecancer imagingcell typechemotherapycollegeconvolutional neural networkcostcost effectivecytotoxicitydeep learningdisadvantaged backgrounddrug discoveryeconomic disparityexperienceexperimental studyhigh resolution imaginghigh throughput screeningimaging systemimprovedminority communitiesmortalitynovelnovel anticancer drugnovel strategiesnovel therapeuticsparticlephenotypic dataresponsescreeningsimulationskillstherapeutic candidatetime usetooltwo-dimensionalultravioletundergraduate student
项目摘要
Abstract: Multidrug resistance (MDR) is a major cause of chemotherapy failure in cancer and a major public
health concern. Often, MDR cancers are aggressive, metastatic, and have poor prognoses. In addition, MDR
cancer is highly resistant to treatments that induce conventional programmed cell death, such as chemotherapy
and radiation. For the purpose of combating apoptosis mediated MDR, new drug discoveries are being directed
towards therapies that induce apoptosis-inhibiting processes, such as necroptosis, autophagy, paraptosis,
methuosis, and ferroptosis. When optimizing new chemical molecules during the early phases of drug discovery,
two key questions need to be addressed: a) the ability of the drug to kill cancer cells, and b) the mechanism by
which the drug kills cancer cells. At present, conventional biochemical assays and high-definition imaging are
the only methods for studying these processes, but they are time consuming, costly, and require skilled experts,
thus limiting their utility to a small number of laboratories.
We propose a paradigm-altering phenotypic screening tool that identifies cell death mechanisms in real time
using high-resolution widefield microscopy coupled with deep learning. First, we propose to develop a low-cost
widefield holographic microscope, with multi-wavelength illumination, including ultraviolet (UV), to enable high
content screening without external labeling, at high resolution that exceeds the diffraction limit. We will achieve
this by integrating lens-less holographic microscopy with microparticle array-based imaging substrates that will
allow us to image thousands of live cells per test. UV illumination may provide extra information about nuclei and
other organelles of cells, even though it is used sparingly. Using time lapse images of cancer cells, a 3D-
convolutional neural network will be trained to identify different morphological features, such as shrinking,
blebbing, vacuoles and membrane ruptures, associated with different cell death processes. During the incubation
step, results will be obtained in real time, using the pre-trained network for automated classification of the cell
death process. Using this approach, new anti-cancer drug molecules and their intermediates can be screened
at high-throughput without requiring any further processing or labeling. A successful completion of this project
will result in an affordable, compact, high-content screening tool that can be used for many different applications,
in addition to phenotypic screening. In particular, during this Covid-19 crisis, which has highlighted the need for
high throughput diagnostics, drug screening, and therapy tools.
By implementing this AREA award, we will significantly strengthen University of Toledo's research climate and
provide undergraduate students with a unique interdisciplinary training experience in biophysics, microscopy,
imaging, deep learning, cell biology, and pharmacology.
摘要: 多药耐药(MDR)是癌症化疗失败的主要原因,也是公众关注的焦点。
健康问题。通常,耐多药癌症具有侵袭性、转移性,并且预后较差。此外,耐多药
癌症对诱导传统程序性细胞死亡的治疗(例如化疗)具有高度抵抗力
和辐射。为了对抗细胞凋亡介导的多药耐药性,新药的发现正在被引导
针对诱导细胞凋亡抑制过程的疗法,例如坏死性凋亡、自噬、细胞凋亡、
和铁死亡。在药物发现的早期阶段优化新化学分子时,
需要解决两个关键问题:a)药物杀死癌细胞的能力,b)其机制
该药物可以杀死癌细胞。目前,常规生化检测和高清成像
研究这些过程的唯一方法,但它们既耗时又昂贵,并且需要熟练的专家,
从而将其实用性限制在少数实验室。
我们提出了一种改变范式的表型筛选工具,可以实时识别细胞死亡机制
使用高分辨率宽视野显微镜与深度学习相结合。首先,我们建议开发一种低成本的
宽视场全息显微镜,具有多波长照明,包括紫外线 (UV),可实现高
无需外部标记即可以超过衍射极限的高分辨率进行内容筛选。我们将实现
这是通过将无透镜全息显微镜与基于微粒阵列的成像基底相结合来实现的
让我们能够在每次测试中对数千个活细胞进行成像。紫外线照射可以提供有关原子核和
细胞的其他细胞器,尽管它很少被使用。使用癌细胞的延时图像,3D-
卷积神经网络将被训练来识别不同的形态特征,例如收缩、
与不同的细胞死亡过程相关的起泡、液泡和膜破裂。孵化期间
步骤,将使用预先训练的网络对细胞进行自动分类,实时获得结果
死亡过程。利用这种方法,可以筛选新的抗癌药物分子及其中间体
高通量,无需任何进一步处理或标记。本项目的顺利完成
将产生一种经济实惠、紧凑、高内涵的筛选工具,可用于许多不同的应用,
除了表型筛选之外。特别是在这场 Covid-19 危机期间,突显了我们需要
高通量诊断、药物筛选和治疗工具。
通过实施该 AREA 奖项,我们将显着加强托莱多大学的研究氛围和
为本科生提供生物物理学、显微镜、
成像、深度学习、细胞生物学和药理学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aniruddha Ray其他文献
Aniruddha Ray的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Parallel Characterization of Genetic Variants in Chemotherapy-Induced Cardiotoxicity Using iPSCs
使用 iPSC 并行表征化疗引起的心脏毒性中的遗传变异
- 批准号:
10663613 - 财政年份:2023
- 资助金额:
$ 45.15万 - 项目类别:
Combination of tumor targeted therapy with stroma modulating agent for PDAC
肿瘤靶向治疗与基质调节剂联合治疗 PDAC
- 批准号:
10629924 - 财政年份:2023
- 资助金额:
$ 45.15万 - 项目类别:
Parallel Characterization of Genetic Variants in Chemotherapy-Induced Cardiotoxicity Using iPSCs
使用 iPSC 并行表征化疗引起的心脏毒性中的遗传变异
- 批准号:
10663613 - 财政年份:2023
- 资助金额:
$ 45.15万 - 项目类别:
Diapause-like adaptation of triple-negative breast cancer cells during chemotherapy treatment
三阴性乳腺癌细胞在化疗期间的滞育样适应
- 批准号:
10354304 - 财政年份:2022
- 资助金额:
$ 45.15万 - 项目类别:
Molecular ontology of drug tolerant persisters in HER2 positive breast cancer - Resubmission - 1
HER2 阳性乳腺癌耐药者的分子本体论 - 重新提交 - 1
- 批准号:
10391866 - 财政年份:2022
- 资助金额:
$ 45.15万 - 项目类别: