Didactic Interaction
教学互动
基本信息
- 批准号:10645100
- 负责人:
- 金额:$ 18.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAlgorithmsAreaAwardBiomechanicsBiomedical EngineeringCaringCerebral PalsyClientClinicalCollaborationsCommunitiesComputer softwareComputersDataData ScienceData SetDegenerative polyarthritisDevicesDisciplineDistance LearningDocumentationEducationEducational process of instructingEducational workshopEngineeringEvaluationEventExposure toFacultyFeedbackFosteringFoundationsGenerationsGoalsGrantIndividualIndustryLeadershipLettersLibrariesLow Back PainMachine LearningMentorsMissionMonitorMovementOutcomeParkinson DiseaseParticipantPatient CarePatient RecruitmentsPatientsPhysical MedicinePhysical therapyPhysiciansPilot ProjectsProcessProductionPublished CommentRehabilitation CentersRehabilitation OutcomeRehabilitation therapyResearchResearch DesignResearch InfrastructureResearch PersonnelResearch Project GrantsResearch TrainingResourcesRoboticsRotationRunningSamplingScientistSoftware ToolsSpecialistStrokeStudentsSurveysTalentsTechnologyTimeTrainingTraining ProgramsTraining and InfrastructureTranslatingTranslationsTravelUniversitiesValidationbiomedical scientistcommunity centercomputer sciencedata cleaningdata sharingdesigneffectiveness evaluationexperiencefrailtyimprovedinnovationinsightinterdisciplinary collaborationknowledgebasemHealthmassive open online coursesmobile computingmobile sensorneurological rehabilitationnew technologyopen sourceoutreach programpatient engagementphysical therapistprogramsrehabilitation researchrehabilitation technologysensor technologyshared repositorysimulationstatisticssymposiumtooluser-friendlywearable sensor technologywiki
项目摘要
Mobile technology is poised to revolutionize rehabilitation research, but the infrastructure and training to
support researchers in designing effective studies, collecting and analyzing data, and translating findings to
improve care has not kept pace with the mobile technology industry. Our Center for Reliable Sensor
Technology-Based Outcomes for Rehabilitation (RESTORE Center) will establish vital research infrastructure
and training that enables rehabilitation scientists to use mobile sensors to monitor a diverse set of real-world
outcomes. We will accomplish this by integrating expertise from bioengineering, statistics, computer science,
mobile health, and clinical rehabilitation. Our mission is to launch a world-wide collaboration involving hundreds
of researcher teams to collect and share real world data on rehabilitation outcomes. To achieve this, we will:
1. Provide state-of-the-art software to convert wearable sensor data into meaningful outcome metrics,
create a data sharing repository with a vast set of movement and outcome data, and develop advanced
data science tools to gain insight from real-world rehabilitation datasets.
2. Train thousands of rehabilitation scientists to use mobile technology for research through bootcamps,
conference-based tutorials, an online knowledgebase, and massive open online courses.
3. Attract and train talented scholars from physical therapy, physiatry, computer science, biomechanics,
and other fields to become experts in mobile technology and the needs of the rehabilitation community.
4. Award 65 seed grants to innovative and meritorious projects to accelerate the use of mobile technology
in rehabilitation research and advance patient care.
5. Encourage the appropriate use of mobile technology in rehabilitation research and foster
interdisciplinary collaborations through a multi-faceted promotion effort. Our broad outreach program
will expand the group of over 14,000 researchers who are currently using our resources.
6. Establish a cohesive, vibrant, and sustainable Medical Rehabilitation Research Resource Center
through the leadership of an experienced executive team that will manage the Center’s activities.
By providing high-quality, in-demand, and open-source software tools, our Center will enable a collaboration of
unprecedented scale between bioengineers, physical therapists, computer scientists, patients, physicians, and
others focused on rehabilitation. Our training efforts will create a new generation of rehabilitation scientists who
are fluent in the strengths and challenges of mobile technology. Our Center will be run by a tightly integrated
clinical and engineering team, enabling us to appreciate the needs and goals of patients, recruit participants to
our studies, and rapidly create valuable new technology. Together with the RESTORE Center community, we
will achieve the potential of mobile technology to monitor real world function and improve care for conditions
including stroke, Parkinson’s disease, osteoarthritis, frailty, cerebral palsy, and low back pain.
移动技术有望彻底改变康复研究,但基础设施和培训
支持研究人员设计有效性研究、收集和分析数据以及将研究结果转化为
我们的可靠传感器中心未能跟上移动技术行业的发展步伐。
基于技术的康复成果(RESTORE 中心)将建立重要的研究基础设施
以及培训,使康复科学家能够使用移动传感器来监测各种不同的现实世界
我们将通过整合生物工程、统计学、计算机科学、
我们的使命是发起一项涉及数百人的全球合作。
为了实现这一目标,我们将:
1. 提供最先进的软件,将可穿戴传感器数据转换为有意义的结果指标,
创建包含大量运动和结果数据的数据共享存储库,并开发先进的
数据科学工具可从现实世界的康复数据集中获得洞察。
2. 通过训练营培训数千名康复科学家使用移动技术进行研究,
基于会议的教程、在线知识库和大量开放在线课程。
3.吸引和培养物理治疗、生理学、计算机科学、生物力学、
等领域成为移动技术和康复社区需求方面的专家。
4. 向创新和优秀项目提供 65 项种子资金,以加速移动技术的使用
康复研究和先进的患者护理。
5. 鼓励在康复研究和培育中适当使用移动技术
通过多方面的推广工作开展跨学科合作。
将扩大目前使用我们资源的超过 14,000 名研究人员的队伍。
6. 建立一个有凝聚力、充满活力、可持续发展的医疗康复研究资源中心
通过经验丰富的执行团队的领导来管理中心的活动。
通过提供高质量、受欢迎的开源软件工具,我们的中心将实现以下方面的协作:
生物工程师、物理治疗师、计算机科学家、患者、医生和
我们的培训工作将培养新一代的康复科学家。
熟悉移动技术的优势和挑战。我们的中心将由紧密集成的机构运营。
临床和工程团队,使我们能够了解患者的需求和目标,招募
我们的研究,并与 RESTORE Center 社区一起快速创造有价值的新技术。
将发挥移动技术的潜力来监控现实世界的功能并改善对条件的护理
包括中风、帕金森病、骨关节炎、虚弱、脑瘫和腰痛。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joy P Ku其他文献
Joy P Ku的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joy P Ku', 18)}}的其他基金
相似国自然基金
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
- 批准号:62303197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
- 批准号:12371366
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
- 批准号:12301508
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
- 批准号:62303204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
集装箱港口装卸运输区域基于碳配额碳交易的运营优化模型和算法研究
- 批准号:72271152
- 批准年份:2022
- 资助金额:44 万元
- 项目类别:面上项目
相似海外基金
Metalloenzyme binding affinity prediction with VM2
使用 VM2 预测金属酶结合亲和力
- 批准号:
10697593 - 财政年份:2023
- 资助金额:
$ 18.09万 - 项目类别:
Accelerating digital cognitive screening for Alzheimer's disease in the Primary Care Setting
加速初级保健机构中阿尔茨海默病的数字认知筛查
- 批准号:
10664618 - 财政年份:2023
- 资助金额:
$ 18.09万 - 项目类别:
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
- 批准号:
10736293 - 财政年份:2023
- 资助金额:
$ 18.09万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 18.09万 - 项目类别:
m6A-suite: an informatics pipeline and resource for elucidating roles of m6A epitranscriptome in cancer
m6A-suite:用于阐明 m6A 表观转录组在癌症中的作用的信息学管道和资源
- 批准号:
10645584 - 财政年份:2023
- 资助金额:
$ 18.09万 - 项目类别: