The emergence of collective cell behaviors from intercellular interactions
细胞间相互作用产生集体细胞行为
基本信息
- 批准号:10652978
- 负责人:
- 金额:$ 41.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-24 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:Automobile DrivingBehaviorBiochemicalBiological ModelsCadherinsCell AdhesionCellsCellular StructuresComplexCongenital AbnormalityCongenital Heart DefectsCraniorachischisesCytoplasmic TailCytoskeletal ModelingCytoskeletonDevelopmental BiologyDiffusionEmbryoEndowmentEpidermisEpitheliumExencephaliesFailureGenerationsGenetic VariationGerm LayersHairHair follicle structureHumanImageImpairmentIndividualIntercellular JunctionsLinkMapsMediatingMembraneModelingMolecularMorphogenesisMorphologyMotionMovementMusMutationMyosin ATPaseNeural Tube DefectsNeural tubeOrganOrganogenesisOutcomeP-CadherinPathway interactionsPatternPattern FormationPeriodicalsPeriodicityPhenotypeProcessProteinsReactionRegenerative MedicineResolutionShapesSkinSpinal DysraphismStructural Congenital AnomaliesStructureSystemTechnologyTestingTimeTissue EngineeringTissuesVertebratesbody systemcell behaviorcell fate specificationcell motilityexperimental studygastrulationgenetic predictorsimaging capabilitiesinsightmalformationmigrationmouse geneticsnovelplanar cell polaritypreventprogenitorrecruitresponsestem cellssuperresolution microscopyvertebrate embryos
项目摘要
Project Summary
Embryos and organs are shaped by complex collective cell movements involving the coordinated action
of thousands of cells over space and time. Impairments in collective cell motion underlie many
structural birth defects, the most common of which is the failure to close the neural tube leading to
spina bifida, exencephaly, or most severely craniorachischisis. One of the key challenges in
developmental biology and tissue engineering is understanding the molecular mechanisms by which
cells coordinate their behaviors across thousands of cells to generate large-scale changes in tissue
forms through local changes in subcellular organization. The planar cell polarity pathway (PCP) has
emerged as a key regulator that organizes individual cell behaviors into large-scale collective cell
movements, and is essential for the proper formation of most organ systems in vertebrates. Given the
diversity of structures whose morphogenesis relies on PCP, a central challenge is to define a common,
unifying set of molecular principals through which PCP acts. Specifically, the molecular links between
PCP components and their downstream effectors are poorly defined. Moreover, we do not understand
how polarity within individual cells is coordinated into collective, tissue-scale behaviors. Defining these
molecular links in detail and connecting them to higher order patterns of collective cell behavior is thus
crucial to our basic understanding of tissue morphogenesis.
The murine epidermis displays striking spatial and directional patterns, and is an ideal model
system to approach these questions. Using newly developed live imaging capabilities, we recently
discovered two novel collective cell movements during formation of epithelial placodes in the
mammalian skin. These movements bear resemblance to the behaviors that underlie embryonic germ
layer formation and gastrulation, suggesting that deeply conserved mechanisms underlie the
morphogenesis of very diverse structures. We propose to use the power of the murine epidermis to
gain a molecular understanding of these Wnt and PCP-dependent collective cell movements. Specific
Aim 1 will define the mechanisms of PCP-mediated force generation and symmetry breaking that drive
collective cell motion. Specific Aim 2 will elucidate how patterns of differential cell adhesion promote
epithelial motility and prevent cell mixing to compartmentalize collective epithelial movements. Specific
Aim 3 will decipher the mechanisms driving epithelial rearrangements during periodic pattern formation.
Our findings will define how local, intercellular interactions generate the large-scale collective
movements that occur during organogenesis and reveal how structural birth defects arise when these
processes go awry.
项目概要
胚胎和器官是由复杂的集体细胞运动塑造的,涉及协调行动
空间和时间上的数千个细胞。细胞集体运动受损是许多疾病的根源
结构性出生缺陷,其中最常见的是神经管未能闭合,导致
脊柱裂、无脑畸形或最严重的颅骨劈裂。的主要挑战之一
发育生物学和组织工程学正在了解其分子机制
细胞协调数千个细胞的行为,从而在组织中产生大规模的变化
通过亚细胞组织的局部变化而形成。平面细胞极性通路 (PCP)
成为将个体细胞行为组织成大规模集体细胞的关键调节者
运动,对于脊椎动物大多数器官系统的正确形成至关重要。鉴于
由于形态发生依赖于 PCP 的结构的多样性,一个中心挑战是定义一个共同的、
PCP 发挥作用的统一分子原理。具体来说,分子之间的联系
PCP 成分及其下游效应器的定义不明确。而且,我们不明白
单个细胞内的极性如何协调成集体的、组织规模的行为。定义这些
因此,详细的分子联系并将它们与集体细胞行为的更高阶模式连接起来
对于我们对组织形态发生的基本理解至关重要。
小鼠表皮显示出惊人的空间和方向图案,是理想的模型
系统来解决这些问题。利用新开发的实时成像功能,我们最近
在上皮基板形成过程中发现了两种新颖的集体细胞运动
哺乳动物的皮肤。这些运动与胚胎的行为相似
层形成和原肠胚形成,表明深层保守的机制是
非常多样化的结构的形态发生。我们建议利用小鼠表皮的力量
获得对这些 Wnt 和 PCP 依赖性集体细胞运动的分子理解。具体的
目标 1 将定义 PCP 介导的力产生和对称性破坏的机制
集体细胞运动。具体目标 2 将阐明差异细胞粘附的模式如何促进
上皮运动并防止细胞混合以分隔集体上皮运动。具体的
目标 3 将破译周期性模式形成过程中驱动上皮重排的机制。
我们的研究结果将定义局部细胞间相互作用如何产生大规模集体
器官发生过程中发生的运动,揭示了当这些运动发生时,结构性出生缺陷是如何产生的
流程出错。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Danelle N Devenport其他文献
Danelle N Devenport的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Danelle N Devenport', 18)}}的其他基金
Cell cycle control of cell polarity and fate in epidermal morphogenesis
表皮形态发生中细胞极性和命运的细胞周期控制
- 批准号:
10608036 - 财政年份:2023
- 资助金额:
$ 41.61万 - 项目类别:
The emergence of collective cell behaviors from intercellular interactions
细胞间相互作用产生集体细胞行为
- 批准号:
10365050 - 财政年份:2022
- 资助金额:
$ 41.61万 - 项目类别:
Cell-cycle control of cell polarity in epidermal patterning and differentiation
表皮图案形成和分化中细胞极性的细胞周期控制
- 批准号:
9923446 - 财政年份:2016
- 资助金额:
$ 41.61万 - 项目类别:
Multiscale coordination of planar cell polarity
平面细胞极性的多尺度协调
- 批准号:
10681822 - 财政年份:2015
- 资助金额:
$ 41.61万 - 项目类别:
Multiscale coordination of planar cell polarity
平面细胞极性的多尺度协调
- 批准号:
10478042 - 财政年份:2015
- 资助金额:
$ 41.61万 - 项目类别:
Multiscale coordination of planar cell polarity
平面细胞极性的多尺度协调
- 批准号:
10242655 - 财政年份:2015
- 资助金额:
$ 41.61万 - 项目类别:
Establishment of Long-Range Tissue Polarity in the Mammalian Epidermis
哺乳动物表皮长程组织极性的建立
- 批准号:
9251745 - 财政年份:2015
- 资助金额:
$ 41.61万 - 项目类别:
Multiscale coordination of planar cell polarity
平面细胞极性的多尺度协调
- 批准号:
10684280 - 财政年份:2015
- 资助金额:
$ 41.61万 - 项目类别:
Multiscale coordination of planar cell polarity
平面细胞极性的多尺度协调
- 批准号:
10911682 - 财政年份:2015
- 资助金额:
$ 41.61万 - 项目类别:
Multiscale coordination of planar cell polarity
平面细胞极性的多尺度协调
- 批准号:
10509600 - 财政年份:2015
- 资助金额:
$ 41.61万 - 项目类别:
相似国自然基金
α-葡糖苷酶在烟粉虱传播番茄褪绿病毒过程中的作用机制研究
- 批准号:31872932
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
DNA计算的生化反应网络动力学行为研究
- 批准号:61772100
- 批准年份:2017
- 资助金额:63.0 万元
- 项目类别:面上项目
低水平抗生素胁迫下微囊藻的生理生化及水处理行为特征
- 批准号:51708490
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
它在拨动琴弦——细胞对纤连蛋白修饰的弹性基底生化-力学耦合感知过程中整合素行为的研究
- 批准号:31771011
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:面上项目
三氯卡班在硝化-反硝化系统中的代谢行为及其对硝化-反硝化生化过程的影响机制
- 批准号:51779089
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
The TGF-Beta/MUC4 Signaling Axis in Circulating Tumor Cells of Metastatic Breast Cancer
转移性乳腺癌循环肿瘤细胞中的 TGF-β/MUC4 信号轴
- 批准号:
10751169 - 财政年份:2023
- 资助金额:
$ 41.61万 - 项目类别:
Engineered DNA-particles to model immune events in systemic lupus erythematosus
工程 DNA 颗粒模拟系统性红斑狼疮的免疫事件
- 批准号:
10644574 - 财政年份:2023
- 资助金额:
$ 41.61万 - 项目类别:
Development and application of a quantitive model for HIV-1 transcriptional activation driven by TAR RNA conformational dynamics
TAR RNA构象动力学驱动的HIV-1转录激活定量模型的开发和应用
- 批准号:
10750552 - 财政年份:2023
- 资助金额:
$ 41.61万 - 项目类别:
Role of Complement Receptor Activation in a Mixed Dementia Model
补体受体激活在混合痴呆模型中的作用
- 批准号:
10585080 - 财政年份:2023
- 资助金额:
$ 41.61万 - 项目类别:
Multiscale Effects of Aging on Elastic Arterial Tissue Mechanics
衰老对弹性动脉组织力学的多尺度影响
- 批准号:
10811244 - 财政年份:2023
- 资助金额:
$ 41.61万 - 项目类别: