Non-invasive automated wound analysis via deep learning neural networks
通过深度学习神经网络进行非侵入性自动伤口分析
基本信息
- 批准号:10631196
- 负责人:
- 金额:$ 39.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-05 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptionAmericanAnimal ModelArchitectureArtificial IntelligenceBiochemicalBiopsyCell CountCell ProliferationCell physiologyCellular InfiltrationCellularityClassificationClinicClinicalClinical assessmentsCollagenCollectionConsumptionContrast MediaCoupledDataDebridementDermatologicDermisDiabetic Foot UlcerElastinElderlyEpidermisExcisionFeedbackFibrosisFluorescenceFunctional disorderFutureGenerationsGeometryGoalsGranulation TissueHair follicle structureHealthHistologicHistologyHistopathologyImageImage AnalysisInfectionInjuryKeratinLabelLaboratory ResearchLipidsMachine LearningManualsMeasuresMetabolicMetabolismMethodsNADHOperative Surgical ProceduresOptical BiopsyOutcomePathologistResearchResearch PersonnelSeriesSkinSkin TissueSourceStainsStructureTechniquesTechnologyTestingThree-Dimensional ImagingTimeTissuesTrainingVisualanalysis pipelineautomated analysisautomated segmentationcell motilitycell typechronic woundcofactorconvolutional neural networkcostcrosslinkdeep learningdeep neural networkdisease classificationgenerative adversarial networkhistological imagehistological stainsimage processingimaging Segmentationin silicoin vivoin vivo optical imaginginsightmicroscopic imagingmultiphoton microscopyneural networknon-healing woundsnon-invasive imagingoptical imagingpentosidinepoint of careproduct developmentpublic health relevancequantitative imagingradiological imagingsecond harmonicskin woundtooltransfer learningtwo-photonvirtualwoundwound carewound closurewound healing
项目摘要
Project Summary:
Each year millions of Americans develop chronic wounds, which require advanced wound care that has been
estimated to cost $50 Billion annually. However, our understanding of chronic wounds and how to treat them
has been limited by a lack of established methods to objectively characterize and measure wound features.
Detailed assessments of wounds in the clinic and research laboratory often occur through histological analysis
of tissue biopsies. This information can provide insight into cellular migration into the wound, cellular proliferation
at the edge of the wound, infection, and fibrosis. However, the collection, creation, and analysis of histology
sections is inherently invasive, time-consuming, and qualitative. The goal of this proposal is to develop an image
analysis pipeline that can provide automated quantitative analysis of wounds and lay the groundwork for a non-
invasive real-time “optical biopsy” that can provide information identical to standard histopathology. Our central
hypothesis is that artificial intelligence approaches using deep learning convolutional neural networks can be
coupled with in vivo multiphoton microscopy and existing quantitative image analysis methods to achieve this
goal with the same accuracy as traditional biopsies with histological staining and expert analysis. In Aim 1, we
will training and validate neural networks capable of segmenting and quantifying standard wound histology based
on training from three independent wound healing research labs. In Aim 2, we will adapt this network to perform
segmentation and quantification of in vivo label-free multiphoton microscopy images of skin wounds to provide
rapid readouts of wound organization and metabolic function. Finally in Aim 3, we will develop and validate a
network capable of generating virtual histology images from our stain-free non-invasive in vivo MPM images,
which can be coupled with the networks developed in Aim 1 and 2 to provide a comprehensive assessment of
wound microstructure and metabolism. In the near-term, this proposal will develop a series of robust analysis
tools that can be applied to existing H&E-stained or unstained skin tissue sections commonly studied by wound
healing researchers. In the long-term, the combination of label-free multiphoton microscopy and machine
learning-based image analysis will enable completely non-invasive wound histology that can be performed in
real-time at the point of care to guide debridement and wound care.
项目概要:
每年有数以百万计的美国人出现慢性伤口,这需要先进的伤口护理
然而,我们对慢性伤口及其治疗方法的了解估计每年花费 500 亿美元。
由于缺乏客观表征和测量伤口特征的既定方法而受到限制。
临床和研究实验室对伤口的详细评估通常通过组织学分析进行
这些信息可以深入了解细胞迁移到伤口、细胞增殖的情况。
然而,伤口边缘、感染和纤维化的收集、创建和分析。
切片本质上是侵入性的、耗时的和定性的。该提案的目标是开发图像。
分析管道,可以提供伤口的自动定量分析,并为非伤口分析奠定基础
侵入性实时“光学活检”,可以提供与标准组织病理学相同的信息。
假设使用深度学习卷积神经网络的人工智能方法可以
结合体内多光子显微镜和现有的定量图像分析方法来实现这一目标
在目标 1 中,我们通过组织学染色和专家分析实现了与传统活检相同的准确性。
将训练和验证基于标准伤口组织学的分割和量化神经网络
在目标 2 中,我们将调整该网络来执行来自三个独立伤口愈合研究实验室的培训。
对皮肤伤口的体内无标记多光子显微镜图像进行分割和量化,以提供
最后,在目标 3 中,我们将开发并验证伤口组织和代谢功能。
网络能够从我们的免染色非侵入性体内 MPM 图像生成虚拟组织学图像,
它可以与目标 1 和 2 中开发的网络相结合,以提供对
在短期内,该提案将开展一系列稳健的分析。
可应用于伤口通常研究的现有 H&E 染色或未染色皮肤组织切片的工具
从长远来看,无标记多光子显微镜和机器的结合。
基于学习的图像分析将实现完全非侵入性的伤口组织学,可以在
在护理点实时指导清创和伤口护理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kyle Patrick Quinn其他文献
Kyle Patrick Quinn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kyle Patrick Quinn', 18)}}的其他基金
Non-invasive automated wound analysis via deep learning neural networks
通过深度学习神经网络进行非侵入性自动伤口分析
- 批准号:
10183917 - 财政年份:2021
- 资助金额:
$ 39.28万 - 项目类别:
Non-invasive automated wound analysis via deep learning neural networks
通过深度学习神经网络进行非侵入性自动伤口分析
- 批准号:
10460416 - 财政年份:2021
- 资助金额:
$ 39.28万 - 项目类别:
Acquisition of rodent metabolic and behavioral phenotyping system
啮齿动物代谢和行为表型系统的获取
- 批准号:
10799014 - 财政年份:2021
- 资助金额:
$ 39.28万 - 项目类别:
Acquisition of a confocal Raman microscope for molecular fingerprinting of cells and tissue
获取用于细胞和组织分子指纹分析的共焦拉曼显微镜
- 批准号:
10582119 - 财政年份:2021
- 资助金额:
$ 39.28万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
金融科技驱动的供应链库存与融资策略和技术采用合作机制研究
- 批准号:72371117
- 批准年份:2023
- 资助金额:39 万元
- 项目类别:面上项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金属有机骨架材料在环境VOCs处理过程中采用原位电子顺磁共振自旋探针检测方法的研究
- 批准号:22376147
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
ARISE (Achieving Routine Intervention and Screening for Emotional health)
ARISE(实现情绪健康的常规干预和筛查)
- 批准号:
10655877 - 财政年份:2023
- 资助金额:
$ 39.28万 - 项目类别:
Access to Healthcare as a Driver of Place-Based Inequality in Mid-Life Mortality: Evidence from Movers in Medicaid
获得医疗保健是中年死亡率地区不平等的一个驱动因素:来自医疗补助推动者的证据
- 批准号:
10583235 - 财政年份:2023
- 资助金额:
$ 39.28万 - 项目类别:
Multi-Stakeholder Determinants of Medicare Diabetes Prevention Program Implementation and Participation
医疗保险糖尿病预防计划实施和参与的多利益相关者决定因素
- 批准号:
10578862 - 财政年份:2023
- 资助金额:
$ 39.28万 - 项目类别:
Utilizing pediatric primary care connections to advance reproductive health
利用儿科初级保健联系促进生殖健康
- 批准号:
10738847 - 财政年份:2023
- 资助金额:
$ 39.28万 - 项目类别: