Quantifying the role of myocyte ultrastructure in atrial health and disease
量化心肌细胞超微结构在心房健康和疾病中的作用
基本信息
- 批准号:10473869
- 负责人:
- 金额:$ 44.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AffectArchitectureArrhythmiaAtrial FibrillationAtrial FunctionBehaviorBlood PressureCardiacCardiomyopathiesCell physiologyCell surfaceCellsCenters for Disease Control and Prevention (U.S.)ChronicComplexComputer ModelsComputer softwareCoupledCouplesCouplingDataDatabasesDevelopmentDiseaseDisease ProgressionElectrophysiology (science)EventExhibitsFailureFibrosisFractureFunctional disorderGeneral PopulationGoalsHealthHeart AtriumHeart DiseasesHeart failureHeterogeneityHumanIn SituInfrastructureLeadLinkLiteratureMaintenanceMapsMeasuresMembraneModelingMolecularMuscle CellsMyocardial ContractionMyocardiumNatureOryctolagus cuniculusOutcomePathologicPathologyPatient-Focused OutcomesPatientsPersonsPharmacotherapyPopulationPredispositionProcessProgressive DiseaseQuality of lifeResearchRoleSiteStructureSystolic heart failureTestingTherapeuticTissuesTreatment outcomeVariantVentricular Dysfunctionbasedesignembolic strokeexperimental analysisexperimental studyhemodynamicshuman tissueimprovedinsightmortalitymulti-scale modelingnovelpressuresimulationstroke risktargeted treatmenttooltreatment strategy
项目摘要
PROJECT SUMMARY: Atrial fibrillation (AF) is the most common cardiac arrhythmia (affecting ~1-2% of the
general population), resulting in markedly reduced quality of life and increased mortality, due to a combination
of altered hemodynamics, progressive atrial and ventricular dysfunction, and embolic stroke. Many diseases and
conditions, like heart failure, are known to contribute to pathological changes leading to AF. Limitations in current
therapy allow AF paroxysms to progress to persistent and chronic AF, as a result of extensive atrial structural
and electrical changes that facilitate AF maintenance (“AF begets AF”). The development of urgently needed
new strategies for AF treatment hinges upon improved understanding of how abnormalities in cellular function
trigger and sustain arrhythmia in atrial tissue. At the cellular level, a hallmark structural change of many chronic
cardiac diseases is degradation of the intricate membrane architecture that couples cardiac electrical excitation
to intracellular Ca2+ release and myocardial contraction (EC coupling) – i.e., the transverse tubule (TT) structures,
which project orthogonally from the cell surface to its interior and thereby synchronize EC coupling throughout
the cell. Degradation of the TT architecture is generally associated with arrhythmia, but it is not yet clear whether
TT loss is a direct contributor to arrhythmia, a compensatory maladaptation, or an epiphenomenon. This is even
less clear in atria, as atrial myocytes exhibit a vastly variable range of TT architectures, with prominent axial
tubules. Further, TT degradation induced by the process of isolating atrial myocytes (vs. denser TTs in intact
tissues) and challenges in experimentally detubulating intact cardiac tissue has so far limited the design of
mechanistic myocyte and tissue studies. As a result, the literature surrounding the role of subcellular structural
(ultrastructural) remodeling in AF has remained fractured, and currently we know relatively little about its role in
contributing to AF pathophysiology. The overarching goal of this proposal is to discriminate the role of changes
in atrial myocyte ultrastructure from other disease-associated sequelae by combining detailed multi-level
experimental analyses of rabbit atrial myocytes and rabbit and human atrial tissues with extensive quantitative
multi-scale computational modeling. The project will develop and validate a suite of modeling tools used to
investigate the mechanisms by which: (1) naturally occurring variations in atrial TTs influence EC coupling and
membrane stability in isolated atrial myocytes; (2) tissue gradients in TT organization influence tissue-level
electrophysiological and EC coupling outcomes; (3) ultrastructural remodeling synergizes with ionic remodeling
to favor atrial arrhythmogenesis in atrial cardiomyopathy. We contend that quantifying the role of atrial
ultrastructure in AF pathology may shed new mechanistic insight into AF management. Each aim includes
rigorously generated and validated modeling frameworks, informed by novel experiments in atrial myocytes and
tissues, and testing of specific hypotheses. Models and data will be distributed freely and widely via software
and database infrastructure supported by Dr. Grandi's lab and scientific networking sites.
项目摘要:心房颤动 (AF) 是最常见的心律失常(影响约 1-2% 的心律失常)
一般人群),导致生活质量显着下降和死亡率增加,原因是
血流动力学改变、进行性心房和心室功能障碍以及栓塞性中风。
已知心力衰竭等疾病会导致导致 AF 的病理变化。
由于广泛的心房结构损伤,治疗允许 AF 阵发发展为持续性和慢性 AF。
以及促进 AF 维护的电气变化(“AF 产生 AF”)。
房颤治疗的新策略取决于对细胞功能异常如何发生的更好理解
在细胞水平上触发并维持心房组织的心律失常,这是许多慢性疾病的标志性结构变化。
心脏病是耦合心脏电兴奋的复杂膜结构的退化
细胞内 Ca2+ 释放和心肌收缩(EC 耦合)——即横管 (TT) 结构,
从细胞表面垂直投射到其内部,从而在整个过程中同步 EC 耦合
TT 结构的退化通常与心律失常有关,但尚不清楚是否与心律失常有关。
TT 丢失是心律失常、代偿性适应不良或附带现象的直接原因。
心房中的情况不太清楚,因为心房肌细胞表现出多种多样的 TT 结构,具有突出的轴向结构
此外,分离心房肌细胞过程引起的 TT 降解(相对于完整的更密集的 TT)
组织)和实验上拔管完整心脏组织的挑战迄今为止限制了设计
因此,围绕亚细胞结构作用的文献。
房颤的(超微结构)重塑仍然支离破碎,目前我们对其在房颤中的作用知之甚少。
对 AF 病理生理学的贡献 该提案的总体目标是区分变化的作用。
通过结合详细的多层次研究心房肌细胞超微结构免受其他疾病相关后遗症的影响
对兔心房肌细胞以及兔和人类心房组织进行广泛定量的实验分析
该项目将开发和验证一套用于进行多尺度计算建模的建模工具。
研究以下机制:(1) 心房 TT 自然发生的变化影响 EC 耦合和
离体心房肌细胞的膜稳定性;(2) TT 组织中的组织梯度影响组织水平
电生理学和 EC 耦合结果;(3)超微结构重塑与离子重塑协同作用;
有利于房性心肌病中房性心律失常的发生,我们认为量化心房的作用。
房颤病理学的超微结构可能为房颤管理提供新的机械见解。
严格生成和验证的建模框架,由心房肌细胞的新颖实验提供信息和
组织,特定假设的测试和数据将通过软件自由且广泛地分发。
以及由 Grandi 博士的实验室和科学网站支持的数据库基础设施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eleonora Grandi其他文献
Eleonora Grandi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eleonora Grandi', 18)}}的其他基金
Perturbed Sodium and Calcium Fluxes in Atrial Fibrillation
心房颤动中钠和钙通量的扰动
- 批准号:
9276787 - 财政年份:2016
- 资助金额:
$ 44.08万 - 项目类别:
Perturbed Sodium and Calcium Fluxes in Atrial Fibrillation
心房颤动中钠和钙通量的扰动
- 批准号:
9927494 - 财政年份:2016
- 资助金额:
$ 44.08万 - 项目类别:
Quantifying the role of myocyte ultrastructure in atrial health and disease
量化心肌细胞超微结构在心房健康和疾病中的作用
- 批准号:
10296281 - 财政年份:2016
- 资助金额:
$ 44.08万 - 项目类别:
Quantifying the role of myocyte ultrastructure in atrial health and disease
量化心肌细胞超微结构在心房健康和疾病中的作用
- 批准号:
10673911 - 财政年份:2016
- 资助金额:
$ 44.08万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Single-Cell RNA Sequencing of Cardiac Organoids to Determine the Genetic Basis for Cell-Specific Responses to Anticancer Drugs
心脏类器官的单细胞 RNA 测序以确定抗癌药物细胞特异性反应的遗传基础
- 批准号:
10679493 - 财政年份:2023
- 资助金额:
$ 44.08万 - 项目类别:
Novel Algorithm and Data Strategies to detect and Predict atrial fibrillation for post-stroke patients (NADSP)
用于检测和预测中风后患者心房颤动的新算法和数据策略 (NADSP)
- 批准号:
10561108 - 财政年份:2023
- 资助金额:
$ 44.08万 - 项目类别:
Function, composition, and mechanism of RNA splicing factories in cardiomyopathy
RNA剪接工厂在心肌病中的功能、组成和机制
- 批准号:
10583011 - 财政年份:2022
- 资助金额:
$ 44.08万 - 项目类别:
Non-contrast 3D T1p Mapping for Myocardial Fibrosis Quantification of Pediatric Cardiomyopathy Patients
用于小儿心肌病患者心肌纤维化定量的非对比 3D T1p 映射
- 批准号:
10351919 - 财政年份:2022
- 资助金额:
$ 44.08万 - 项目类别: