Single-Cell RNA Sequencing of Cardiac Organoids to Determine the Genetic Basis for Cell-Specific Responses to Anticancer Drugs
心脏类器官的单细胞 RNA 测序以确定抗癌药物细胞特异性反应的遗传基础
基本信息
- 批准号:10679493
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-30 至 2026-09-29
- 项目状态:未结题
- 来源:
- 关键词:AcuteAdverse effectsAffectAllelesAnthracyclineAntineoplastic AgentsArrhythmiaBiological MarkersBiological ModelsBlood VesselsCancer PatientCancer SurvivorCandidate Disease GeneCardiacCardiac MyocytesCardiotoxicityCardiovascular PhysiologyCardiovascular systemCatalogsCell Culture TechniquesCell Differentiation processCell LineCellsCessation of lifeClassificationDataDiseaseDoxorubicinDrug usageEndodermEndothelial CellsEnvironmentFibroblastsFluorouracilFunctional disorderFutureGene ExpressionGene Expression RegulationGenesGeneticGenetic TranscriptionGenotypeHeartHeart failureHeritabilityHypertensionIndividualIntuitionLong-Term EffectsMalignant NeoplasmsMapsMeasuresMediatingMesoderm CellModelingMorbidity - disease rateNeural Crest CellOncologyOrganoidsPathway interactionsPatientsPharmaceutical PreparationsPharmacogenomicsPharmacotherapyPredispositionPrimitive foregut structureProceduresReportingReproducibilityRiskRisk FactorsSample SizeSamplingSupporting CellSymptomsSystemTestingTimeTissuesToxic effectTranscriptTreatment ProtocolsVariantVascular Endothelial CellVascular SystemWorkanticancer treatmentbevacizumabcancer therapycardiovascular risk factorcell typeclinical phenotypedifferentiation protocoldisorder riskeffective therapyexperimental studygenetic architecturegenetic variantgenotyped patientsimprovedindividual patientinduced pluripotent stem cellinter-individual variationmortalitynovelpersonalized medicineprematureresponseside effectsingle-cell RNA sequencingstem cellstraittranscriptomics
项目摘要
PROJECT SUMMARY
Anticancer drug-induced cardiovascular toxicity (CT) is a major side effect for many patients undergoing
treatment for oncological disorders. CT symptoms vary widely across individuals, both in presentation and in
time to onset. Risk of CT complicates treatment protocols and places cancer patients under additional duress.
Genetic background is broadly understood to be a component of CT susceptibility, but specific variants and
mechanisms remain largely unknown. To understand the genetic basis for drug-induced CT, we need to
understand how anticancer drugs stimulate transcriptomic responses in multiple cardiovascular cell types from
individuals of different genetic backgrounds. Inter-individual variability in response to anticancer drugs is
mediated by genetic variants that affect gene regulation in a drug-dependent manner (response eQTLs). In
other words, genetic variants respond to anticancer drugs by regulating the activity of specific genes. Notably,
different cell types can vary in their response eQTLs to anticancer drugs. I propose to determine the genetic
basis for transcriptomic responses to the anticancer drugs doxorubicin (DOX), 5-fluorouracil (5-FU), and
bevacizumab (BVC) in multiple cardiac cell types from a genetically diverse panel of 70 individuals.
Identification of CT-associated response eQTLs necessitates a high-throughput model system comprised of
multiple cardiac cell types. For Aim 1 of my proposal, I have developed a culture environment and guided
differentiation protocol conducive to cardiac lineage and supporting cell types. This procedure reproducibly
transforms induced pluripotent stem cell (iPSC)-derived embryoid bodies (EBs) into cardiac organoids.
Preliminary data demonstrate that the cardiac organoids harbor cardiomyocytes, fibroblasts, vascular
endothelial cells, and other mesodermal cell types. In Aim 2, I will perform single-cell RNA sequencing
(scRNA-seq) on a panel of 70 cardiac organoids cultured in control and drug-treated conditions. Repeating
this experiment across multiple individuals will allow me to identify the response eQTLs that regulate how
different cardiovascular cell types respond to each drug. In Aim 3, I will quantify gene expression levels and
identify response eQTLs that regulate transcriptional changes to each anticancer drug in cardiovascular cell
types. Response eQTLs (which are anchored by genotype) provide a catalog of loci that interact either directly
or indirectly with the treatment. These response eQTLs may reveal specific genes and pathways important for
normal cardiovascular function. Elucidating the genetic architecture underlying CT risk will provide intuition on
cardiotoxic mechanisms and associated genes and inform future studies that aim to classify individual patient
susceptibility.
项目概要
抗癌药物引起的心血管毒性(CT)是许多接受化疗的患者的主要副作用
治疗肿瘤疾病。 CT 症状因人而异,无论是表现形式还是表现形式
发病时间。 CT 的风险使治疗方案变得复杂,并使癌症患者面临额外的压力。
人们广泛认为遗传背景是 CT 易感性的一个组成部分,但特定变异和
机制仍然很大程度上未知。为了了解药物诱导 CT 的遗传基础,我们需要
了解抗癌药物如何刺激多种心血管细胞类型的转录组反应
不同遗传背景的个体。抗癌药物反应存在个体差异
由以药物依赖性方式影响基因调控的遗传变异介导(反应 eQTL)。在
换句话说,基因变异通过调节特定基因的活性来响应抗癌药物。尤其,
不同的细胞类型对抗癌药物的 eQTL 反应可能有所不同。我建议确定遗传
抗癌药物阿霉素(DOX)、5-氟尿嘧啶(5-FU)和
贝伐珠单抗 (BVC) 对来自 70 名遗传多样性个体的多种心脏细胞类型进行了研究。
CT 相关响应 eQTL 的识别需要一个高通量模型系统,其中包括
多种心肌细胞类型。对于我提案的目标 1,我开发了一种文化环境并指导
有利于心脏谱系和支持细胞类型的分化方案。此过程可重复
将诱导多能干细胞 (iPSC) 衍生的胚状体 (EB) 转化为心脏类器官。
初步数据表明,心脏类器官含有心肌细胞、成纤维细胞、血管细胞
内皮细胞和其他中胚层细胞类型。在目标 2 中,我将进行单细胞 RNA 测序
(scRNA-seq) 对在对照和药物处理条件下培养的 70 个心脏类器官进行分析。重复
这个针对多个个体的实验将使我能够识别响应 eQTL,从而调节如何
不同的心血管细胞类型对每种药物有反应。在目标 3 中,我将量化基因表达水平并
识别调节心血管细胞中每种抗癌药物转录变化的反应 eQTL
类型。响应 eQTL(由基因型锚定)提供了直接相互作用的基因座目录
或间接与治疗有关。这些反应 eQTL 可能揭示对某些重要的特定基因和途径
心血管功能正常。阐明 CT 风险背后的遗传结构将为以下方面提供直觉:
心脏毒性机制和相关基因,并为未来旨在对个体患者进行分类的研究提供信息
易感性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erik McIntire其他文献
Erik McIntire的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于真实世界医疗大数据的中西药联用严重不良反应监测与评价关键方法研究
- 批准号:82274368
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
OR10G7错义突变激活NLRP3炎症小体致伊马替尼严重皮肤不良反应的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于隐狄利克雷分配模型的心血管系统药物不良反应主动监测研究
- 批准号:82273739
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于真实世界数据的创新药品上市后严重罕见不良反应评价关键方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
D.formicigenerans菌通过调控FoxP3-Treg影响PD-1抑制剂所致免疫相关不良反应的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Examining the effects of Global Budget Revenue Program on the Costs and Quality of Care Provided to Cancer Patients Undergoing Chemotherapy
检查全球预算收入计划对接受化疗的癌症患者提供的护理成本和质量的影响
- 批准号:
10734831 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Mitochondrial mechanisms and signaling in manganese exposure
锰暴露中的线粒体机制和信号传导
- 批准号:
10734614 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Optogenetic and chemogenetic regulation of uterine vascular function
子宫血管功能的光遗传学和化学遗传学调控
- 批准号:
10785667 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
IL-17A mRNA-targeted oligonucleotide therapeutics in Idiopathic Pulmonary Fibrosis (IPF)
IL-17A mRNA 靶向寡核苷酸治疗特发性肺纤维化 (IPF)
- 批准号:
10761365 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Hemorrhagic transformation associated with delayed reperfusion in perinatal and childhood ischemic stroke: brain maturation-dependent role of leukocytes
与围产期和儿童缺血性卒中延迟再灌注相关的出血性转化:白细胞的脑成熟依赖性作用
- 批准号:
10811475 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别: