Pre-clinical Translational Research Facility
临床前转化研究设施
基本信息
- 批准号:10926645
- 负责人:
- 金额:$ 238.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:Animal ExperimentsAnimal ModelAnimalsAreaBiologicalBiological MarkersBiological ProcessBiologyBiopsyBiotechnologyBrain NeoplasmsBreedingCamptothecin-11Cancer cell lineCategoriesCell LineCellsCentral Nervous System NeoplasmsCharacteristicsClinicClinicalClinical Drug DevelopmentClinical InvestigatorClinical TrialsClinical Trials DesignCollaborationsCommunitiesConvectionCooperative Research and Development AgreementCytostaticsDataDevelopmentDevelopmental Therapeutics ProgramDiagnosticDoseDrug Delivery SystemsDrug ScreeningDrug TargetingEvaluationExtramural ActivitiesFutureGene ExpressionGene Expression ProfileGene Expression ProfilingGenerationsGeneticGenomicsGliomaGrowthHumanImageImmunotherapeutic agentIn VitroInstitutionIntracarotidInvestigational TherapiesLabelLaboratoriesMagnetic Resonance ImagingMagnetismMetabolicMethodsMissionModelingMolecularMusNational Institute of Neurological Disorders and StrokeOperative Surgical ProceduresPathway interactionsPatientsPatternPharmaceutical PreparationsPharmacologic SubstanceProgram DevelopmentProgression-Free SurvivalsPropertyProtective AgentsRNARadiation-Sensitizing AgentsReagentResearchResearch DesignResearch PersonnelResourcesSN-38SamplingScheduleSerumSerum MarkersServicesSpecimenSurrogate MarkersTechnologyTestingTherapeuticTissuesTranslational ResearchTumor Cell LineTumor Stem CellsUnited States National Institutes of HealthWorkXenograft procedureangiogenesisantitumor agentantitumor drugblood-brain barrier disruptioncancer stem cellclinical centerclinical developmentcytotoxicdesignearly phase clinical trialendothelial stem cellexpectationexperimental studyglioma cell linehuman diseaseimaging sciencein vivoirinotecanmouse modelneuralnovelnovel therapeuticspre-clinicalprecision medicinepreclinical developmentprogramsprotein biomarkersrepositoryresearch facilityresponsescreeningscreening programstem cell biologystem cellssubcutaneoustargeted treatmenttranslational studytumortumor progressionvasculogenesis
项目摘要
The major mission of the PTRF is to provide services for clinical investigators to evaluate potential new anti-glioma agents in vitro and in vivo. The NOB Lab has collaborated with pharmaceutical companies and academic institutions, and the NCI Developmental Therapeutics Program in the preclinical and clinical development of a number of new anti-glioma agents. The first step in the development pipeline is screening of the agent through the PTRF that provides the professional service for screening these agents both in vitro and in vivo using both standard subcutaneous and stereotactic intracranial models. Furthermore, PTRF provides experimental and technical support to other investigators both within and outside of the NOB for evaluating newly developed therapeutics. These extended studies involved stereotactic-based intracranial models looking at various dose and administration schedules as well as combination trials of the new drug with other agents. For example, the PTRF has helped to generate the RNA for gene expression profiles for given glioma cell lines treated with a specific class of agents. Once characteristic patterns are identified that correspond with anti-tumor activity, then clinical trials can/will be devised to administer one of these agents to patients with brain tumors immediately prior to biopsy/surgery in order to attempt and identify a similar genetic profile clinically. In collaboration with the NOB Lab and the Genomic Core team, gene expression signatures are being generated in all of glioma cell lines and GIC/GSCs for all compounds tested within the PTRF. In addition, a number of newer drug delivery technologies including intra-carotid administration, delivery with or without selective or gross blood-brain barrier disruption, convection delivery, etc. have been evaluated in animal models within the PTRF. Many of the new classes of anti-tumor therapeutics will have cytostatic rather than cytotoxic properties. Evaluating which of these agents will have biologic activity in humans in small, early clinical trials is a challenge since the standard response criteria are based on the determination of cytotoxic responses. The only truly valid clinical parameter available for evaluating the activity of a truly cytostatic agent is patient survival or tumor progression-free survival. These, however, are not useful parameters for screening drug activity in small, early phase clinical trials. Thus, if surrogate markers of biologic activity could be identified, one could utilize these as early endpoints for screening out agents with little or no clinical activity. Toward that end, the PTRF is actively working to develop surrogate markers of drug anti-tumor activity that can be utilized and validated in clinical trials, which includes three major areas:1) Imaging; 2) Gene expression profiling; 3) Proteinomics/Serum markers. For example, in collaboration with investigators in NOB, NINDS and the Clinical Centers program of experimental imaging science, noninvasive MR imaging has been used to image magnetically labeled endothelial progenitor cells in vivo to directly identify vasculogenesis in a glioma model. Finally, the PTRF stores representative tumor, tissue and serum samples from animals treated with each new compound tested with the expectations that new candidate tissue and/or serum-based protein markers of drug activity, tumor activity and/or some tumor biological process (i.e. angiogenesis) may be found. This will be an invaluable preclinical resource for validating such claims in the future. A major effort of the NOB is to develop human glioma cell lines that more closely model primary human gliomas both biologically and molecularly. The PTRF is actively involved in the generation of primary human glioma cell lines and GIC/GSC lines from fresh surgical specimens for glioma patient operated on at the NIH. Working closely with the cancer stem cell biologists for the growth, propagation and characterization of each of these cell lines and animal xenografts, the PTRF uses these well-characterized cell lines (described above in the project Exploring the Therapeutic Potential of Stem Cell Biology in Gliomas) as screens for two major categories of drugs; 1) The most promising drugs from the first levels of in vitro and in vivo screens using the more conventional established glioma cell lines; 2) The drugs that target pathways that may not be well represented by the biology of standard glioma cell lines but are reproduced in the GIC/GSCs. The laboratory expertise utilizing these cells, and the large resources of different GIC/GSC lines, are a potent enticement for potential partnerships between NCI and the pharmaceutical/ biotechnology community given their growing appreciation of the limitation of standard cancer cell lines and the promise of cancer stem cells for better representing the human disease. Since PTRF initiated in 2016, four clinical trials have activated as a direct result of translational work performed within the NOB, all of which had preclinical animal studies performed within the facility. Furthermore, we have identified 3 compounds solely through the preclinical screening program that have since been brought forward to clinical trials at the NIH (Regadenoson, TG02, LB100). One reagent Irinotecan (CPT-11/SN-38) has also been tested on mouse glioma xenografts recently. PTRF is further extending the translational studies, such as experimental immunotherapeutics, synthetic lethality for the Precision Medicine Program and metabolic targeting therapeutics, as well as the experimental therapeutics for rare CNS tumors PTRF is further extending the translational studies, such as experimental immunotherapeutics, synthetic lethality for the Precision Medicine Program and metabolic targeting therapeutics, as well as the experimental therapeutics for rare CNS tumors (Animal Study Proposal: NOB001, 005, 007, 008, 021, 023, and 024).
PTRF的主要任务是为临床研究人员提供服务,以评估潜在的体外和体内新抗脱脂瘤药物。 NOB实验室已与制药公司和学术机构以及许多新的抗激瘤药物的临床前和临床开发中的NCI发育治疗计划合作。开发管道的第一步是通过PTRF筛选代理,该PTRF提供了使用标准皮下和立体定向性颅内模型在体外和体内筛选这些药物的专业服务。此外,PTRF为NOB内外的其他研究人员提供了实验和技术支持,以评估新开发的治疗剂。这些扩展研究涉及基于立体定向的颅内模型,以研究各种剂量和给药时间表以及新药与其他药物的组合试验。例如,PTRF有助于生成用特定类型剂处理的给定神经胶质瘤细胞系的基因表达谱的RNA。一旦确定了与抗肿瘤活性相对应的特征模式,则可以/将设计临床试验,以/将在活检/手术前立即向脑瘤患者施用其中一种,以便在临床上尝试和识别类似的遗传概况。与NOB实验室和基因组核心团队合作,在PTRF中测试的所有化合物中,在所有神经胶质瘤细胞系和GIC/GSC中都会生成基因表达特征。此外,已经在PTRF的动物模型中评估了许多较新的药物输送技术,包括 - 偶然的给药,有或不具有选择性或严重的血脑屏障破坏,对流递送等,对流术,对流递送等。许多新类别的抗肿瘤疗法将具有细胞抑制性而不是细胞毒性特性。在小型早期临床试验中,评估这些药物中的哪些药物将在人类中具有生物活性,这是一个挑战,因为标准响应标准基于细胞毒性反应的确定。可用于评估真正细胞抑制剂活性的唯一真正有效的临床参数是患者生存或无肿瘤进展生存。但是,这些不是在小型早期临床试验中筛选药物活性的有用参数。因此,如果可以确定生物活性的替代标记物,则可以将其用作早期终点,以筛选出很少或没有临床活性的药物。为此,PTRF正在积极努力开发药物抗肿瘤活性的替代标记,这些标志可以在临床试验中使用和验证,其中包括三个主要领域:1)成像; 2)基因表达分析; 3)蛋白质组学/血清标记。例如,与NOB,NINDS和实验成像科学临床中心计划的研究人员合作,无创的MR成像已用于在体内对磁性标记的内皮祖细胞进行图像,以直接识别胶质瘤模型中的血管生成。最后,PTRF在每种新化合物中的动物中存储了代表性的肿瘤,组织和血清样品,并希望发现新候选组织和/或基于血清的药物活性,肿瘤活性和/或某些肿瘤生物学过程(即血管生成)的新候选组织和/或基于血清的蛋白质标志物。这将是将来验证此类索赔的宝贵临床前资源。 NOB的主要努力是开发人神经胶质瘤细胞系,这些细胞系在生物学和分子上更加紧密地对原代人神经胶质瘤进行了模拟。 PTRF积极参与来自新鲜手术标本的原代人神经胶质瘤细胞系和GIC/GSC系的生成,用于在NIH上进行的神经胶质瘤患者。 PTRF与这些细胞系和动物异种移植物中每一种的生长,传播和表征紧密合作,使用这些特征良好的细胞系(在该项目中描述了上述探索神经膜中干细胞生物学的治疗潜力)作为两种主要类别类别的筛查的筛查; 1)使用更常规的胶质瘤细胞系中最初的体外和体内筛查水平的最有前途的药物; 2)靶向可能无法很好地代表标准神经胶质瘤细胞系但在GIC/GSC中再现的药物。利用这些细胞的实验室专业知识以及不同GIC/ GSC系的大量资源,是对NCI与药品/生物技术社区之间潜在伙伴关系的有力诱惑,因为它们对标准癌细胞系的限制以及对癌症干细胞的限制的越来越多,可以更好地代表人类疾病。自PTRF于2016年启动以来,四项临床试验已激活,这是NOB中进行的转化工作的直接结果,所有这些试验都在设施内进行了临床前动物研究。此外,我们仅通过临床前筛查计划确定了3种化合物,此后已将其引发到NIH的临床试验(Regadenoson,TG02,LB100)。最近,最近在小鼠神经胶质瘤异种移植物上测试了一种试剂伊立替康(CPT-11/SN-38)。 PTRF进一步扩展了翻译研究,例如实验性免疫治疗药,精确医学计划的合成致死性和代谢靶向治疗学,以及针对稀有CNS肿瘤PTRF的实验性治疗方法,进一步扩展了翻译研究,例如实验性医学,构成验证性,以及合成的验证性,以及相互群体的范围,并相互挑战。稀有中枢神经系统肿瘤的治疗剂(动物研究建议:NOB001、005、007、008、021、023和024)。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantitation of the next-generation imipridone ONC206 in human plasma by a simple and sensitive UPLC-MS/MS assay for clinical pharmacokinetic application.
- DOI:10.1016/j.jpba.2022.114685
- 发表时间:2022-05-10
- 期刊:
- 影响因子:3.4
- 作者:Goodell JC;Zimmerman SM;Peer CJ;Prabhu V;Yin T;Richardson WJ;Azinfar A;Dunn JA;Mullin M;Theeler BJ;Gilbert M;Figg WD
- 通讯作者:Figg WD
Detection of Metabolic Changes Induced via Drug Treatments in Live Cancer Cells and Tissue Using Raman Imaging Microscopy.
使用拉曼成像显微镜检测活癌细胞和组织中药物治疗引起的代谢变化。
- DOI:10.3390/bios9010005
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Larion,Mioara;Dowdy,Tyrone;Ruiz-Rodado,Victor;Meyer,MatthewW;Song,Hua;Zhang,Wei;Davis,Dionne;Gilbert,MarkR;Lita,Adrian
- 通讯作者:Lita,Adrian
Adenosine A2A Receptor Activation Enhances Blood-Tumor Barrier Permeability in a Rodent Glioma Model.
- DOI:10.1158/1541-7786.mcr-19-0995
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Vézina A;Manglani M;Morris D;Foster B;McCord M;Song H;Zhang M;Davis D;Zhang W;Bills J;Nagashima K;Shankarappa P;Kindrick J;Walbridge S;Peer CJ;Figg WD;Gilbert MR;McGavern DB;Muldoon LL;Jackson S
- 通讯作者:Jackson S
Dexamethasone-induced immunosuppression: mechanisms and implications for immunotherapy.
- DOI:10.1186/s40425-018-0371-5
- 发表时间:2018-06-11
- 期刊:
- 影响因子:10.9
- 作者:Giles AJ;Hutchinson MND;Sonnemann HM;Jung J;Fecci PE;Ratnam NM;Zhang W;Song H;Bailey R;Davis D;Reid CM;Park DM;Gilbert MR
- 通讯作者:Gilbert MR
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Gilbert其他文献
Mark Gilbert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Gilbert', 18)}}的其他基金
Exploring the Therapeutic Potential of Stem Cell Biology in Gliomas
探索干细胞生物学在神经胶质瘤中的治疗潜力
- 批准号:
10014742 - 财政年份:
- 资助金额:
$ 238.68万 - 项目类别:
Identifying New Glioma-Associated Tumor Suppressors and Oncogenes
鉴定新的神经胶质瘤相关肿瘤抑制因子和癌基因
- 批准号:
10014745 - 财政年份:
- 资助金额:
$ 238.68万 - 项目类别:
Exploring the Therapeutic Potential of Stem Cell Biology in Gliomas
探索干细胞生物学在神经胶质瘤中的治疗潜力
- 批准号:
10262378 - 财政年份:
- 资助金额:
$ 238.68万 - 项目类别:
Brain Tumor Clinical and Clinical Research Program
脑肿瘤临床和临床研究计划
- 批准号:
10262806 - 财政年份:
- 资助金额:
$ 238.68万 - 项目类别:
Brain Tumor Animal Therapeutics Core (Scientific Cores)
脑肿瘤动物治疗核心(科学核心)
- 批准号:
9154353 - 财政年份:
- 资助金额:
$ 238.68万 - 项目类别:
Identifying New Glioma-Associated Tumor Suppressors and Oncogenes
鉴定新的神经胶质瘤相关肿瘤抑制因子和癌基因
- 批准号:
10486899 - 财政年份:
- 资助金额:
$ 238.68万 - 项目类别:
相似国自然基金
构建环状RNA调控肝癌干细胞干性维持的实验动物模型及机制研究
- 批准号:32070533
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
大鼠创伤性颞下颌关节强直实验动物模型的构建及发生机制研究
- 批准号:81970954
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
髌骨脱位后股骨滑车发育不良的实验动物模型研究
- 批准号:81873983
- 批准年份:2018
- 资助金额:75.0 万元
- 项目类别:面上项目
舒张性心衰(HFpEF)的动物模型:机理研究和实验治疗
- 批准号:81770265
- 批准年份:2017
- 资助金额:80.0 万元
- 项目类别:面上项目
基于神经中央软骨生长调控的早发性脊柱侧弯矫正模式的动物实验研究
- 批准号:81772422
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 238.68万 - 项目类别:
Soft wireless multimodal cardiac implantable devices for long-term investigating heart failure pathogenesis
用于长期研究心力衰竭发病机制的软无线多模式心脏植入装置
- 批准号:
10735395 - 财政年份:2023
- 资助金额:
$ 238.68万 - 项目类别:
Swine Somatic Cell Gene Editing Testing Center
猪体细胞基因编辑检测中心
- 批准号:
10773796 - 财政年份:2023
- 资助金额:
$ 238.68万 - 项目类别:
Neural Inflammation and Exercise Pressor Reflex in Heart Failure
心力衰竭中的神经炎症和运动升压反射
- 批准号:
10712202 - 财政年份:2023
- 资助金额:
$ 238.68万 - 项目类别: