Biology and applications of mammalian hibernation-like states
哺乳动物冬眠状态的生物学和应用
基本信息
- 批准号:10473207
- 负责人:
- 金额:$ 175.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-20 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AnimalsAwardBehaviorBiologyBloodBlood CirculationBody TemperatureBreathingCancer BiologyCell SurvivalCellsComplexCritical CareDegenerative DisorderDisease ProgressionEnvironmentFoodFoundationsFutureGeneticGrowthHeart ArrestHeart RateHibernationHourHumanHypothalamic structureHypoxiaLaboratory miceLifeMalignant NeoplasmsMedicalMedicineMetabolic DiseasesMetabolismMonitorMovementMusNatureNerve DegenerationNeuronsOrganOrganismPathway interactionsPhysiologicalPhysiologyPlanet EarthPopulationPrimatesPrincipal InvestigatorRoleStressStrokeTimeTransgenic OrganismsTraumaWorkbehavioral studycancer therapychemotherapyenergy balanceexperimental studyfascinatehuman tissueinnovationmetabolic rateneonatal careneuronal circuitrynonhuman primatenovelnovel strategiespreventprogramstool
项目摘要
Program Director/Principal Investigator (Last, First, Middle): Hrvatin, Sinisa
Project Summary:
Life on Earth has evolved fascinating adaptations such as torpor and hibernation to survive extreme
environments. These extraordinary adaptations are characterized by profoundly decreased physiological
functions, including metabolic rate, body temperature, circulation, breathing, and heart-rate. How warm-blooded
animals enter, regulate, and survive these states remains one of the most fascinating mysteries of homeotherm
biology, the understanding of which could have profound implications on human medicine. Investigating, for
example, the mechanisms that adaptively modulate metabolism could provide new approaches to regulate
human energy balance and treat metabolic diseases. An induced hypothermic and hypometabolic state could
slow down disease progression, for example cancer growth. The pathways that enable cells and organs in torpor
and hibernation to survive hypoxic and hypothermic stress might also be harnessed to facilitate cell survival
during trauma, stroke, cardiac arrest, chemotherapy, or even neurodegeneration. Among the species naturally
capable of entering these states are laboratory mice. Mice placed in environments devoid of food initiate torpor
- a behavior characterized by bouts of greatly reduced core body temperature, movement, and metabolic rate,
lasting several hours. Recently, employing novel transgenic tools and sequencing approaches, we examined
this complex behavior and discovered that mouse torpor is regulated by a distinct population of neurons in the
hypothalamus. Inhibiting these neurons prevents natural torpor and stimulating them rapidly decreases metabolic
rate and body temperature, inducing a torpor-like state. This discovery forms the foundation for future
explorations of mechanisms regulating torpor and hibernation, enabling for the first time genetic access to
monitor, initiate, manipulate, and study these behaviors. In this proposal, we investigate key unanswered
questions in the field of torpor and hibernation and explore potential applications for induced hibernation-like
states in cancer biology. Specifically, we examine the neuronal circuit that regulates the decrease in body
temperature and metabolic rate and explore the role of circulating factors in inducing this organism-wide state.
We pioneer a new approach to induce a long-term hibernation-like state in mice, explore mammalian physiology
in this state, and examine the impact of this state on cancer growth and protection from chemotherapy. Finally,
we investigate the evolutionary conservation of torpor-regulating neurons across species including in non-human
primates and human tissues and examine whether a torpor-like state can be induced in a non-human primate,
paving the way to potential human applications. This proposal is bold and ambitious; however, each of the
proposed projects contains clearly defined and feasible experiments whose results have the potential to greatly
advance, if not transform, our understanding of torpor, hibernation, and homeotherm biology. The innovative and
early-stage nature of this work, along with its potential to advance medical treatment, makes it ideally suited for
the New Innovator Award.
项目总监/首席研究员(最后、第一、中间):Hrvatin、Sinisa
项目概要:
地球上的生命已经进化出令人着迷的适应能力,例如麻木和冬眠,以在极端环境下生存
环境。这些非凡的适应的特点是生理功能严重下降
功能,包括代谢率、体温、循环、呼吸和心率。多么热血
动物进入、调节和生存这些状态仍然是恒温最迷人的谜团之一
生物学,对生物学的理解可能对人类医学产生深远的影响。正在调查,对于
例如,适应性调节新陈代谢的机制可以提供新的调节方法
人体能量平衡和治疗代谢疾病。诱导的体温过低和代谢低下状态可能
减缓疾病进展,例如癌症的生长。使细胞和器官处于麻木状态的途径
为了在缺氧和低温应激下生存而冬眠也可以用来促进细胞存活
在外伤、中风、心脏骤停、化疗甚至神经退行性疾病期间。物种之中自然
能够进入这些状态的是实验室小鼠。将小鼠置于没有食物的环境中会引发麻木状态
- 一种以核心体温、运动和代谢率大幅降低为特征的行为,
持续几个小时。最近,采用新颖的转基因工具和测序方法,我们检查了
这种复杂的行为,并发现小鼠的麻木状态是由大脑中不同的神经元群调节的
下丘脑。抑制这些神经元可以防止自然麻木,刺激它们可以快速降低新陈代谢
率和体温,引起类似麻木的状态。这一发现为未来奠定了基础
探索调节麻木和冬眠的机制,首次实现基因获取
监控、发起、操纵和研究这些行为。在此提案中,我们调查了未解答的关键问题
麻木和冬眠领域的问题并探索诱导冬眠的潜在应用
癌症生物学领域的国家。具体来说,我们检查调节身体功能下降的神经元回路。
温度和代谢率,并探索循环因素在诱导这种生物体范围状态中的作用。
我们开创了一种新方法来诱导小鼠进入长期冬眠状态,探索哺乳动物的生理学
在这种状态下,并检查这种状态对癌症生长和化疗保护的影响。最后,
我们研究了跨物种(包括非人类)的麻木调节神经元的进化保守性
灵长类动物和人类组织,并检查是否可以在非人类灵长类动物中诱导类似麻木的状态,
为潜在的人类应用铺平道路。这个提议是大胆而雄心勃勃的;然而,每个
拟议的项目包含明确定义和可行的实验,其结果有可能极大地
推进(如果不是改变的话)我们对麻木、冬眠和恒温生物学的理解。创新和
这项工作的早期性质及其促进医学治疗的潜力,使其非常适合
新创新奖。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sinisa Hrvatin其他文献
Sinisa Hrvatin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sinisa Hrvatin', 18)}}的其他基金
Neuronal pathways regulating metabolic adaptation
调节代谢适应的神经元通路
- 批准号:
10552958 - 财政年份:2020
- 资助金额:
$ 175.5万 - 项目类别:
相似国自然基金
草原生态补奖政策对牧户兼业行为的影响机理研究——以内蒙古为例
- 批准号:72363025
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
生态补奖背景下草原牧户实现自主性减畜的机制、路径和政策研究
- 批准号:72374130
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
草原生态补奖政策对牧民调整草场经营行为的影响研究:作用机理、实证分析与政策优化
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
草原生态补奖政策激励-约束下牧民生产行为决策机制及生态效应
- 批准号:
- 批准年份:2020
- 资助金额:50 万元
- 项目类别:
华罗庚数学奖获得者座谈会及数学普及活动
- 批准号:11926407
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Integration of seasonal cues to modulate neuronal plasticity
整合季节性线索来调节神经元可塑性
- 批准号:
10723977 - 财政年份:2023
- 资助金额:
$ 175.5万 - 项目类别:
Sex, Physiological State, and Genetic Background Dependent Molecular Characterization of CircuitsGoverning Parental Behavior
控制父母行为的回路的性别、生理状态和遗传背景依赖性分子特征
- 批准号:
10661884 - 财政年份:2023
- 资助金额:
$ 175.5万 - 项目类别:
Mechanism of epidermal coordination during development and regeneration in zebrafish
斑马鱼发育和再生过程中表皮协调机制
- 批准号:
10643060 - 财政年份:2023
- 资助金额:
$ 175.5万 - 项目类别:
Microglia-Mediated Astrocyte Activation in the Acute-to-Chronic Pain Transition
小胶质细胞介导的星形胶质细胞激活急性向慢性疼痛的转变
- 批准号:
10639281 - 财政年份:2023
- 资助金额:
$ 175.5万 - 项目类别: