Atomically-thin diode integrated into a nanopore DNA Sensor
集成到纳米孔 DNA 传感器中的原子薄二极管
基本信息
- 批准号:9808985
- 负责人:
- 金额:$ 21.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAluminum OxideBase PairingBiologicalCharacteristicsChemicalsDNADNA ProbesDNA sequencingDepositionDetectionDevelopmentDevicesDiseaseEngineeringGenomeGoalsHemolysinIndividualityLengthMeasurementMeasuresMechanicsMembraneMethodsMolecular MotorsMotionNucleotidesPrincipal InvestigatorReportingResolutionSignal TransductionSodium ChlorideSpeedSystemTechnologyThinnessUnited States National Institutes of Healthbasecostdensityelectric fieldgenome sequencinggraphenehigh rewardhigh riskhuman genome sequencingimprovedmonolayernanometernanoporenanoscalenew technologynext generation sequencingnovelpersonalized medicinepreventprogramssensorsolid statetwo-dimensional
项目摘要
Principal Investigator/Program Director (Last, First, Middle): Bashir, Rashid
Summary:
Sequencing the human genome has helped to improve our understanding of disease, inheritance and
individuality. The growing need for cheaper and faster genome sequencing has prompted the development of
new technologies that surpass conventional Sanger chain-termination methods in terms of speed and cost.
These next-generation sequencing technologies — inspired by the $1,000 genome challenge proposed by the
National Institutes of Health in 2004 — are beginning to revolutionize personalized medicine. Nanopore
sensors are one of a number of DNA sequencing technologies that are currently poised to meet this challenge.
Biological nanopores such as a-hemolysin and MspA, which consist of molecular motors anchored at the pore,
have shown very promising results for ionic current based sequencing of ssDNA molecules, and systems using
these pores are now being commercialized by Oxford Nanopores Technologies. However, biological
nanopores do not provide the potential of direct single nucleotide read since the pore length spans 5-6 bases
long. Solid-state nanopores using two-dimensional materials such as graphene, MoS2, and others could
address this challenge regarding spatial resolution of sensing and controlling the DNA motion are addressed.
As well as robustness and durability, the solid-state approach offers the ability to potentially fabricate high-
density arrays of nanopores, attractive mechanical and chemical characteristics, and the possibility of
integrating with novel electronic detection mechanisms. Despite the potential promise, to-date solid state
nanopores have yet to demonstrate DNA sequencing, and resolving the challenges require discovering new
mechanisms of sensing and translocation control.
In this proposal, we introduce a completely new type of sensor which has the desired spatial resolution of sub
nanometer and can potentially control the translocation of the DNA molecule. This high risk, high reward
approach consists of engineering a nanometer scale out of plane diode using a 2D heterostructure consisting
of crossed junction of monolayer MoS2 on monolayer WSe2. Unlike the nanopores in single monolayers, the
new sensor allows multi-terminal measurements to probe different physical phenomena within the
heterostructure simultaneously, enabling correlated measurements and control of the DNA translocation
through the nanopore. The out of plane electric fields at the reverse bias junction will allow for sub nanometer
spatial probing of the DNA molecule, and can also reduce the stringent requirement of measuring the change
in in-plane conductivity of nanoribbons in which nanopores are formed. The applied biases and local electric
field can also be used to control the translocation speed of the molecule. Understanding the relative
contributions, interaction, and crosstalk of these different signals is the key scientific goal of this proposal. The
key technological goal is to use the new readout schema to achieve single base pair resolution in sensing
within a solid state nanopore.
首席研究员/项目总监(最后、第一、中间):Bashir、Rashid
概括:
人类基因组测序有助于提高我们对疾病、遗传和疾病的理解
对更便宜、更快速的基因组测序的日益增长的需求促进了基因组测序的发展。
在速度和成本方面超越传统桑格链终止方法的新技术。
这些下一代测序技术——受到 1,000 美元基因组挑战的启发
美国国立卫生研究院 (National Institutes of Health) 于 2004 年开始革新个性化医疗。
传感器是目前准备应对这一挑战的众多 DNA 测序技术之一。
生物纳米孔,例如α-溶血素和MspA,由锚定在孔上的分子马达组成,
已经显示出基于离子电流的 ssDNA 分子测序以及使用的系统非常有希望的结果
这些孔现在已被牛津纳米孔技术公司商业化,然而,生物。
纳米孔不提供直接单核苷酸读取的潜力,因为孔长度跨越 5-6 个碱基
使用石墨烯、MoS2 等二维材料的固态纳米孔可以。
解决了有关传感和控制 DNA 运动的空间分辨率的这一挑战。
除了坚固性和耐用性之外,固态方法还提供了制造高性能的潜在能力。
纳米孔的密度阵列、有吸引力的机械和化学特性以及
尽管有潜在的希望,但迄今为止的固态。
纳米孔尚未证明 DNA 测序,解决这些挑战需要发现新的
传感和易位控制机制。
在本提案中,我们引入了一种全新类型的传感器,其具有亚级所需的空间分辨率
纳米技术可以潜在地控制DNA分子的易位,这种高风险、高回报。
该方法包括使用二维异质结构设计纳米级平面外二极管,该二维异质结构包括
单层MoS2在单层WSe2上的交叉结与单个单层中的纳米孔不同。
新的传感器允许多终端测量来探测不同的物理现象
同时异质结构,实现 DNA 易位的相关测量和控制
通过纳米孔,反向偏置结场处的平面外电场将允许亚纳米级。
DNA分子的空间探测,还可以降低测量变化的严格要求
形成纳米孔的纳米带的面内电导率。
场还可用于控制分子的相对易位速度。
这些不同信号的贡献、相互作用和串扰是该提案的关键科学目标。
关键技术目标是使用新的读出模式来实现传感中的单碱基对分辨率
在固态纳米孔内。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rashid Bashir其他文献
Rashid Bashir的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rashid Bashir', 18)}}的其他基金
Point-of-Care Microfluidic Biochip for Biomarkers Monitoring for Contributing in Early Sepsis Diagnosis
用于生物标志物监测的护理点微流控生物芯片有助于早期脓毒症诊断
- 批准号:
10673974 - 财政年份:2021
- 资助金额:
$ 21.62万 - 项目类别:
Point-of-Care Microfluidic Biochip for Biomarkers Monitoring for Contributing in Early Sepsis Diagnosis
用于生物标志物监测的护理点微流控生物芯片有助于早期脓毒症诊断
- 批准号:
10462484 - 财政年份:2021
- 资助金额:
$ 21.62万 - 项目类别:
Smartphone-linked system for diagnosis and epidemiological reporting of pathogens at the point of care
智能手机连接系统,用于在护理点诊断和流行病学报告病原体
- 批准号:
10241489 - 财政年份:2019
- 资助金额:
$ 21.62万 - 项目类别:
High accuracy optical growth assay of 3D cellular systems
3D 细胞系统的高精度光学生长测定
- 批准号:
10330571 - 财政年份:2019
- 资助金额:
$ 21.62万 - 项目类别:
Multiplexed Pathogen Detection from Whole Blood for Rapid Detection of Sepsis
全血多重病原体检测可快速检测脓毒症
- 批准号:
9809870 - 财政年份:2019
- 资助金额:
$ 21.62万 - 项目类别:
Smartphone-linked system for diagnosis and epidemiological reporting of pathogens at the point of care
智能手机连接系统,用于在护理点诊断和流行病学报告病原体
- 批准号:
10462690 - 财政年份:2019
- 资助金额:
$ 21.62万 - 项目类别:
"LLISA:'Liposome-Linked Immunosorbant Assay' for Detection of HIV Viral Load at Point-of-Care"
“LLISA:用于护理点 HIV 病毒载量检测的‘脂质体联免疫吸附测定’”
- 批准号:
8721331 - 财政年份:2013
- 资助金额:
$ 21.62万 - 项目类别:
LLISA: ???Liposome-Linked Immunosorbant Assay??? for Detection of HIV Viral Load
LLISA:???脂质体连接免疫吸附测定???
- 批准号:
8514874 - 财政年份:2013
- 资助金额:
$ 21.62万 - 项目类别:
Measurements of BPDE-DNA adducts by solid state nonopore and deep sequencing (PQ
通过固态非孔和深度测序 (PQ
- 批准号:
8534070 - 财政年份:2012
- 资助金额:
$ 21.62万 - 项目类别:
Measurements of BPDE-DNA adducts by solid state nonopore & deep sequencing (PQ3
通过固态非孔测量 BPDE-DNA 加合物
- 批准号:
8384743 - 财政年份:2012
- 资助金额:
$ 21.62万 - 项目类别:
相似国自然基金
氧化铝液滴沉积的动力学特性及其包覆条件下碳/碳喉衬热结构特性研究
- 批准号:52302479
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
原子层沉积的氧化铝/二硫化钼复合涂层刀具的基础研究
- 批准号:52375413
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于材料素化理念设计氧化铝纤维独石结构陶瓷及其性能调控与退化机制研究
- 批准号:52303386
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多孔氧化铝陶瓷的动力学特性和本构关系研究
- 批准号:12372352
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
尿素酶解法合成均匀掺杂氧化铝纳米管/棒用于表面辅助激光解吸质谱快速检测抗生素
- 批准号:22376105
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Epitaxial Film Growth and Characterization of Stable and Metastable Gallium-Aluminum-Oxide Polymorphs
稳定和亚稳定镓铝氧化物多晶型物的外延膜生长和表征
- 批准号:
2324375 - 财政年份:2023
- 资助金额:
$ 21.62万 - 项目类别:
Standard Grant
An Engineered Surface of Mucociliary Transport for Medical Devices
用于医疗器械的粘膜纤毛运输工程表面
- 批准号:
10627572 - 财政年份:2023
- 资助金额:
$ 21.62万 - 项目类别:
Bio-tribo-corrosion resistant 3D Printed Composites for Load-bearing Implants
用于承重植入物的生物耐摩擦腐蚀 3D 打印复合材料
- 批准号:
10631737 - 财政年份:2022
- 资助金额:
$ 21.62万 - 项目类别:
Bio-tribo-corrosion resistant 3D Printed Composites for Load-bearing Implants
用于承重植入物的生物耐摩擦腐蚀 3D 打印复合材料
- 批准号:
10631737 - 财政年份:2022
- 资助金额:
$ 21.62万 - 项目类别:
Collaborative Research: Laboratory and Observational Investigations of Aluminum Oxide Analogs of Stardust
合作研究:星尘氧化铝类似物的实验室和观测研究
- 批准号:
2106926 - 财政年份:2021
- 资助金额:
$ 21.62万 - 项目类别:
Standard Grant