Systems Biology Analyses for Hemodynamic Regulation of Vascular Homeostasis
血管稳态血流动力学调节的系统生物学分析
基本信息
- 批准号:9111932
- 负责人:
- 金额:$ 96.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-24 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:AnimalsAnti-Inflammatory AgentsAnti-inflammatoryApolipoprotein EApoptosisAreaArterial Fatty StreakAtherosclerosisBioinformaticsBiological AssayBlood VesselsCardiovascular DiseasesCell physiologyCellsChromosome MappingCuesDataDiseaseEndothelial CellsEventFigs - dietaryGene ExpressionGene Expression RegulationGenesHealthHomeostasisIn VitroInflammationInflammatoryKnock-outKnowledgeLeadLeukocytesMaintenanceMapsMeasurementMechanicsMessenger RNAModelingMolecularMolecular ProfilingMusNatureOutputOxidation-ReductionPathway interactionsPatternPhenotypePhysiologicalPlayPreventionProceduresProcessProteomicsRegulationResistanceRoleSignal PathwaySignal TransductionSignaling MoleculeSignaling ProteinSmall Interfering RNAStagingStressSystemSystems BiologyThoracic aortaTimeTissuesTranscriptional RegulationTranslational RegulationTreesVascular DiseasesVascular Endothelial CellWound Healingaortic archbasecardiovascular healthdisorder preventiongene producthemodynamicsin vivoinhibitor/antagonistinsightloss of functionmonocytenetwork modelsnoveloxidationphosphoproteomicsprotective effectreconstructionresearch studyresponseshear stresstemporal measurement
项目摘要
DESCRIPTION (provided by applicant): The focal nature of the atherosclerotic lesions indicates that hemodynamic forces are critical for the regulation of vascular homeostasis in health and disease. Responses of vascular endothelial cells (ECs) to hemodynamic forces play significant roles in such regulations. In vivo studies implicate that the ECs in branch points express pro-atherogenic phenotypes. In contrast, ECs in the straight parts of the arterial tree are
exposed to high shear flow with a large net forward direction, and these regions are generally spared from atherosclerosis. The in vitro studies by others and us suggest that steady and pulsatile shear stresses (PS) with a net forward direction, which simulates the flow condition at the straight part of the arterial tree, induce genes involved in anti-proliferation, anti-oxidation anti-inflammation, and maintenance of vascular tone, with athero-protective effects such as reduction of cell turnover, prevention of white cell recruitment, promotion of wound healing, and adaptive remodeling. In contrast, oscillatory shear stress (OS) without a significant forward direction is atherogenic by activating pro-proliferative, pro-oxidative, and pro-inflammatory genes. We hypothesize that, while PS and OS may activate similar signaling events at the initial stage, the results will diverge with time. Time-dependent mapping of the signal networks will lead to temporal resolution of the gene expression profiles, hence the differential functional consequences of PS vs. OS. In this proposed project, we will examine the signaling, transcriptional regulations, and functional phenotypes of ECs under PS and OS over time. Mapping the differential pathways under these flow conditions requires the use of systems biology approaches that provides a comprehensive mechanistic and network perspective on the diferential responses to stresses. In order to systematically map the flow-regulation of EC functions, we propose the following specific aims: (1) To establish the temporal map of EC signaling events under PS vs, OS. (2) To investigate the transcriptional regulations of EC gene expression under PS vs, OS. (3) To examine the temporal resolution of phenotypic responses of ECs under PS vs, OS. (4) To integrate molecular events and EC functions by reconstruction of signaling models. (5) To validate the defined EC signaling events and gene expressions in mouse arterial tree. Under these Specific Aims, we will conduct experiments systematically to obtain the data necessary for the systems biology analyses to construct the molecular and pathway models for the physiological and pathological regulations of EC molecular events and functional consequences. This integrative and collaborative systems biology approach will generate new insights into the intricate process of mechanotransduction by which different flow patterns modulate homeostasis in the arterial wall. These findings will greatly enhance our understanding of the molecular and mechanical bases of atherosclerosis, a major pathophysiological event in cardiovascular diseases.
描述(由申请人提供):动脉粥样硬化病变的局灶性表明血流动力学对于健康和疾病中血管稳态的调节至关重要。血管内皮细胞(EC)对血流动力学的反应在此类调节中发挥着重要作用。体内研究表明分支点的 EC 表达促动脉粥样硬化表型。相比之下,动脉树笔直部分的 EC 是
暴露于具有大净前向的高剪切流下,这些区域通常不会发生动脉粥样硬化。我们和其他人的体外研究表明,具有净前向的稳态和脉动剪切应力(PS)模拟动脉树直线部分的流动条件,诱导参与抗增殖、抗氧化和抗氧化的基因。 -炎症和维持血管张力,具有动脉粥样硬化保护作用,例如减少细胞更新、防止白细胞募集、促进伤口愈合和适应性重塑。相反,没有明显前进方向的振荡剪切应力(OS)会通过激活促增殖、促氧化和促炎症基因而导致动脉粥样硬化。我们假设,虽然 PS 和 OS 在初始阶段可能会激活类似的信号事件,但结果会随着时间的推移而出现差异。信号网络的时间依赖性映射将导致基因表达谱的时间分辨率,因此 PS 与 OS 的功能结果不同。在这个拟议的项目中,我们将随着时间的推移检查 PS 和 OS 下 EC 的信号传导、转录调控和功能表型。绘制这些流动条件下的差异路径需要使用系统生物学方法,该方法为对压力的差异响应提供全面的机制和网络视角。为了系统地绘制 EC 功能的流量调节图,我们提出以下具体目标:(1)建立 PS 与 OS 下 EC 信号事件的时间图。 (2)探讨PS与OS下EC基因表达的转录调控。 (3) 检查 PS 与 OS 下 EC 表型反应的时间分辨率。 (4)通过重建信号模型来整合分子事件和EC功能。 (5) 验证小鼠动脉树中定义的 EC 信号事件和基因表达。在这些具体目标下,我们将系统地进行实验,以获得系统生物学分析所需的数据,以构建EC分子事件和功能后果的生理和病理调控的分子和途径模型。这种综合协作的系统生物学方法将为复杂的力转导过程产生新的见解,不同的流动模式通过该过程调节动脉壁的稳态。这些发现将极大地增强我们对动脉粥样硬化(心血管疾病的主要病理生理学事件)的分子和机械基础的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHU CHIEN其他文献
SHU CHIEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHU CHIEN', 18)}}的其他基金
Integration of single-cell imaging and multi-omics sequencing to study EC mechano-pathophysiology
整合单细胞成像和多组学测序来研究 EC 机械病理生理学
- 批准号:
10825307 - 财政年份:2023
- 资助金额:
$ 96.63万 - 项目类别:
Locus-specific Imaging of Dynamic Histone Methylations during Reprogramming
重编程过程中动态组蛋白甲基化的位点特异性成像
- 批准号:
9922921 - 财政年份:2017
- 资助金额:
$ 96.63万 - 项目类别:
The Organizational Hub and Web Portal for the 4D Nucleome Network
4D 核组网络的组织中心和门户网站
- 批准号:
9344559 - 财政年份:2015
- 资助金额:
$ 96.63万 - 项目类别:
The Organizational Hub and Web Portal for the 4D Nucleome Network
4D 核组网络的组织中心和门户网站
- 批准号:
8988647 - 财政年份:2015
- 资助金额:
$ 96.63万 - 项目类别:
Integration of single-cell imaging and multi-omics sequencing to study EC mechano-pathophysiology
整合单细胞成像和多组学测序来研究 EC 机械病理生理学
- 批准号:
10443151 - 财政年份:2013
- 资助金额:
$ 96.63万 - 项目类别:
Mechanism of Atheroprone Mechanotransduction Studied By Single Cell Imaging
单细胞成像研究动脉粥样硬化的机械传导机制
- 批准号:
8615815 - 财政年份:2013
- 资助金额:
$ 96.63万 - 项目类别:
Role of Spatiotemporal Epigenetic Dynamics in Regulating Endothelial Gene Expressions under Flows
时空表观遗传动力学在调节流动下内皮基因表达中的作用
- 批准号:
10063534 - 财政年份:2013
- 资助金额:
$ 96.63万 - 项目类别:
Mechanism of Atheroprone Mechanotransduction Studied By Single Cell Imaging
单细胞成像研究动脉粥样硬化的机械传导机制
- 批准号:
8787794 - 财政年份:2013
- 资助金额:
$ 96.63万 - 项目类别:
Systems Biology Analyses for Hemodynamic Regulation of Vascular Homeostasis
血管稳态血流动力学调节的系统生物学分析
- 批准号:
8332732 - 财政年份:2012
- 资助金额:
$ 96.63万 - 项目类别:
Systems Biology Analyses for Hemodynamic Regulation of Vascular Homeostasis
血管稳态血流动力学调节的系统生物学分析
- 批准号:
9403707 - 财政年份:2012
- 资助金额:
$ 96.63万 - 项目类别:
相似国自然基金
卡萨烷选择性调控糖皮质激素受体GR功能的抗炎作用机制与新颖调控剂的设计与发现
- 批准号:82273824
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
靶向HDAC3/SIAH2蛋白复合物的HDAC3降解剂的作用机制、结构改造及非酶活功能介导的抗炎活性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ZAP-70选择性共价抑制剂及降解剂的设计合成和抗炎活性研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于片段的P2Y14受体拮抗剂的设计、合成和抗炎活性研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
两种民族药用植物中黄酮类ILCreg诱导剂的发现及其抗炎性肠病机制探究
- 批准号:81960777
- 批准年份:2019
- 资助金额:34 万元
- 项目类别:地区科学基金项目
相似海外基金
Targeting Immune-Responsive Gene 1 (Irg1) and Itaconate for Cardioprotection of the Donor Heart for Transplantation
靶向免疫反应基因 1 (Irg1) 和衣康酸对移植供体心脏进行心脏保护
- 批准号:
10895712 - 财政年份:2023
- 资助金额:
$ 96.63万 - 项目类别:
Bionanomatrix coating to enhance antibacterial effects while reducing inflammation of knee joint implants
生物纳米基质涂层可增强抗菌效果,同时减少膝关节植入物的炎症
- 批准号:
10822220 - 财政年份:2023
- 资助金额:
$ 96.63万 - 项目类别:
Defining molecular pathways triggered by IL-10 and TGFb that drive HIV integration and persistence in Tfh cells in lymph nodes
定义由 IL-10 和 TGFb 触发的分子途径,驱动 HIV 整合并在淋巴结 Tfh 细胞中持续存在
- 批准号:
10762759 - 财政年份:2023
- 资助金额:
$ 96.63万 - 项目类别:
“Protection from MRSA lethality by inhibiting LXRα phosphorylation”
– 通过抑制 LXRα 磷酸化来防止 MRSA 致死 –
- 批准号:
10681027 - 财政年份:2023
- 资助金额:
$ 96.63万 - 项目类别:
Modulation of innate immune exhaustion during sepsis
败血症期间先天免疫衰竭的调节
- 批准号:
10680874 - 财政年份:2023
- 资助金额:
$ 96.63万 - 项目类别: