Systems Biology Analyses for Hemodynamic Regulation of Vascular Homeostasis
血管稳态血流动力学调节的系统生物学分析
基本信息
- 批准号:9403707
- 负责人:
- 金额:$ 105.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-24 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:ArteriesAtherosclerosisBiologyBlood VesselsCell physiologyCellular biologyCharacteristicsChromatinChromatin StructureClinical MedicineComputer SimulationDNADNA MethylationDataDiseaseEndothelial CellsEndotheliumEpigenetic ProcessEventFunctional disorderGene ExpressionGeneticGenetic TranscriptionGoalsGrantHealthHomeostasisHumanIn VitroInvestigationKnowledgeLeadMapsMeasurementMediatingMethodsModelingModificationMolecularMolecular ProfilingMusNetwork-basedPatternPharmacologyPhenotypePhysiologicalPlayProceduresRegulationRegulator GenesRegulatory PathwayResearchRoleSeriesSignal TransductionSpecimenSystemSystems BiologyTechnologyTestingTimeTranscriptional RegulationTranslationsTreesUntranslated RNAValidationVariantVascular Endothelial Cellatheroprotectivebasechromatin immunoprecipitationchromatin modificationchromatin remodelingdata integrationdisease phenotypedisorder preventionepigenetic regulationgenome-widehemodynamicshistone modificationhuman subjecthuman tissuein vivoloss of functionmechanotransductionmulti-scale modelingnetwork modelsnovelreconstructionresponseshear stresstime intervaltranscriptometranscriptome sequencing
项目摘要
Hemodynamic regulation is important in endothelium homeostasis. In our first four years of this systems
biology grant, we established the signaling and transcription mechanisms of endothelial cell response to
atheroprotective and atheroprone shear stresses in vitro and in vivo. We have continued to develop the first
dynamical model of EC transcriptome regulated by different shear stresses with an extensive time-series
study. Through which, we have established the significant role of epigenetic modifications, particularly
chromatin remodeling, in EC transcriptome regulations. These findings lead us to hypothesize that
atheroprotective and atheroprone flows induce differential changes in histone modifications and long-range
DNA interactions mediated by long non-coding RNA (lncRNA) to lead to distinct transcriptome underlying
endothelial homeostasis vs. dysfunction. We further hypothesize that these changes are dynamically regulated
to result in distinct temporal signals and gene expression. We propose to study the temporal delineation of the
sequence of events in which signaling leads to chromatin modifications and long-range DNA interaction
followed by transcription, thus causing further translational and post-transcriptional responses, and eventually
normal vs. diseased phenotype. The proposed research will serve as the first multiscale systems study of
endothelial response to shear stress to elucidate the physiological and pathophysiological mechanisms
important for the onset and progression of atherosclerotic diseases. Our goal is to explore the epigenetic
regulation of transcription in mechanistic details, and the specific objectives include the following: 1)
measurement and identification of epigenetic and regulatory factors that differentially regulate EC function
under different shearing conditions (ChIP-seq method), 2) study of chromatin structure and topology on EC
function under shear flows (4C method), 3) integrative analysis of epigenetic and transcriptional data to provide
mechanisms and build dynamical regulatory networks of shear-mediated phenotypes in EC (systems biology
methods), and 4) testing and validation of novel hypotheses of hemodynamic regulation in vitro, in silico and in
vivo using genetic and pharmacological perturbation methods, including studies on normal and diseased artery
tissues from human subjects. We anticipate that the results from this project will provide a comprehensive
multiscale model of flow-mediated functional consequences in ECs for normal and pathophysiology.
血流动力学调节在内皮稳态中很重要。在我们使用这个系统的头四年里
生物学资助,我们建立了内皮细胞响应的信号传导和转录机制
体外和体内的动脉粥样硬化保护和动脉粥样硬化易发剪切应力。我们继续开发第一个
具有广泛时间序列的不同剪切应力调节的 EC 转录组动力学模型
学习。通过它,我们确定了表观遗传修饰的重要作用,特别是
EC 转录组法规中的染色质重塑。这些发现使我们推测
动脉粥样硬化保护性和动脉粥样硬化易发性流动诱导组蛋白修饰和长程的差异变化
由长非编码 RNA (lncRNA) 介导的 DNA 相互作用导致不同的转录组
内皮稳态与功能障碍。我们进一步假设这些变化是动态调节的
产生不同的时间信号和基因表达。我们建议研究一下时间划分
信号传导导致染色质修饰和长程 DNA 相互作用的事件序列
随后进行转录,从而引起进一步的翻译和转录后反应,最终
正常表型与患病表型。拟议的研究将作为第一个多尺度系统研究
内皮对剪切应力的反应以阐明生理和病理生理机制
对于动脉粥样硬化疾病的发生和进展具有重要意义。我们的目标是探索表观遗传学
转录调控的机制细节,具体目标包括以下内容:1)
测量和鉴定差异调节 EC 功能的表观遗传和调节因素
不同剪切条件下(ChIP-seq方法),2)EC上染色质结构和拓扑的研究
剪切流下的功能(4C 方法),3) 表观遗传和转录数据的综合分析,以提供
机制并建立 EC 中剪切介导表型的动态调控网络(系统生物学
方法),以及4)体外、计算机和体内血流动力学调节新假设的测试和验证
使用遗传和药理学扰动方法进行体内研究,包括对正常和患病动脉的研究
来自人类受试者的组织。我们预计该项目的结果将提供全面的
EC 中流介导的功能后果对正常和病理生理学的多尺度模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHU CHIEN其他文献
SHU CHIEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHU CHIEN', 18)}}的其他基金
Integration of single-cell imaging and multi-omics sequencing to study EC mechano-pathophysiology
整合单细胞成像和多组学测序来研究 EC 机械病理生理学
- 批准号:
10825307 - 财政年份:2023
- 资助金额:
$ 105.76万 - 项目类别:
Locus-specific Imaging of Dynamic Histone Methylations during Reprogramming
重编程过程中动态组蛋白甲基化的位点特异性成像
- 批准号:
9922921 - 财政年份:2017
- 资助金额:
$ 105.76万 - 项目类别:
The Organizational Hub and Web Portal for the 4D Nucleome Network
4D 核组网络的组织中心和门户网站
- 批准号:
9344559 - 财政年份:2015
- 资助金额:
$ 105.76万 - 项目类别:
The Organizational Hub and Web Portal for the 4D Nucleome Network
4D 核组网络的组织中心和门户网站
- 批准号:
8988647 - 财政年份:2015
- 资助金额:
$ 105.76万 - 项目类别:
Integration of single-cell imaging and multi-omics sequencing to study EC mechano-pathophysiology
整合单细胞成像和多组学测序来研究 EC 机械病理生理学
- 批准号:
10443151 - 财政年份:2013
- 资助金额:
$ 105.76万 - 项目类别:
Mechanism of Atheroprone Mechanotransduction Studied By Single Cell Imaging
单细胞成像研究动脉粥样硬化的机械传导机制
- 批准号:
8615815 - 财政年份:2013
- 资助金额:
$ 105.76万 - 项目类别:
Role of Spatiotemporal Epigenetic Dynamics in Regulating Endothelial Gene Expressions under Flows
时空表观遗传动力学在调节流动下内皮基因表达中的作用
- 批准号:
10063534 - 财政年份:2013
- 资助金额:
$ 105.76万 - 项目类别:
Mechanism of Atheroprone Mechanotransduction Studied By Single Cell Imaging
单细胞成像研究动脉粥样硬化的机械传导机制
- 批准号:
8787794 - 财政年份:2013
- 资助金额:
$ 105.76万 - 项目类别:
Systems Biology Analyses for Hemodynamic Regulation of Vascular Homeostasis
血管稳态血流动力学调节的系统生物学分析
- 批准号:
8332732 - 财政年份:2012
- 资助金额:
$ 105.76万 - 项目类别:
Systems Biology Analyses for Hemodynamic Regulation of Vascular Homeostasis
血管稳态血流动力学调节的系统生物学分析
- 批准号:
9111932 - 财政年份:2012
- 资助金额:
$ 105.76万 - 项目类别:
相似国自然基金
基于肠道菌群-胆汁酸-FXR受体信号互作探讨胆囊胆固醇沉积/冠状动脉粥样硬化土壅木郁、母病及子的生物学内涵及黄连温胆汤的干预机制研究
- 批准号:
- 批准年份:2022
- 资助金额:49 万元
- 项目类别:面上项目
低振荡切应力调控血管内皮细胞清道夫受体-B1促进动脉粥样硬化的力学生物学机制研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
血管内皮细胞泡沫化在动脉粥样硬化中的作用及其力学生物学机制
- 批准号:12272246
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
血管内皮细胞吞噬促动脉粥样硬化发生的细胞力学生物学机制研究
- 批准号:
- 批准年份:2020
- 资助金额:310 万元
- 项目类别:重点项目
基于队列和代谢组学的无症状颅内动脉粥样硬化新型生物学标志物及预警模型研究
- 批准号:81971128
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Regulation of Vascular Calcification by Adventitial Endothelial Cells
外膜内皮细胞对血管钙化的调节
- 批准号:
10642619 - 财政年份:2023
- 资助金额:
$ 105.76万 - 项目类别:
Systems Genetics of Vascular Smooth Muscle Phenotypes
血管平滑肌表型的系统遗传学
- 批准号:
10771623 - 财政年份:2023
- 资助金额:
$ 105.76万 - 项目类别:
NKA/CD36 signaling in adipocytes promotes oxidative stress and drives chronic inflammation in atherosclerosis
脂肪细胞中的 NKA/CD36 信号传导促进氧化应激并驱动动脉粥样硬化的慢性炎症
- 批准号:
10655793 - 财政年份:2023
- 资助金额:
$ 105.76万 - 项目类别:
Biomimetic Vascular Matrix for Vascular Smooth Muscle Cell Mechanobiology and Pathology
用于血管平滑肌细胞力学生物学和病理学的仿生血管基质
- 批准号:
10586599 - 财政年份:2023
- 资助金额:
$ 105.76万 - 项目类别: