Identification of novel analgesic targets in ascending spinal projection neurons
上行脊髓投射神经元中新型镇痛靶点的鉴定
基本信息
- 批准号:9486008
- 负责人:
- 金额:$ 23.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2020-05-30
- 项目状态:已结题
- 来源:
- 关键词:Absence of pain sensationAccountingAction PotentialsAdultAdverse effectsAfferent NeuronsAffinity ChromatographyAmericanAnalgesicsAutomobile DrivingAxonBioinformaticsBrainCellsChimeric ProteinsClinicalComplementDataDevelopmentElectrophysiology (science)ExhibitsG-Protein-Coupled ReceptorsGene ExpressionGene Expression ProfileGene Expression RegulationGenerationsGenesGeneticGenetic HeterogeneityGenetic RecombinationGoalsHumanImmunohistochemistryIn Situ HybridizationIn VitroInflammationInjuryInterneuronsInvestigationIon ChannelKnowledgeLesionMediatingMembraneMessenger RNAModalityMolecularMolecular ProfilingMolecular TargetMotorMotor NeuronsMusNerveNerve TissueNeuronsNociceptionOperative Surgical ProceduresOutcomeOutputPainPain ResearchPathologicPathway interactionsPeripheralPharmacologyPhenotypePhysiologicalPopulationPosterior Horn CellsProprioceptionProtein KinaseProteinsPublic HealthQuality of lifeResearchResearch PersonnelRibosomesRoleSensorySpinalSpinal CordSpinal cord posterior hornTechniquesTestingTimeTissuesTouch sensationTranslatingUniversitiesWorkbasecell typechronic painchronic painful conditioncollaborative environmentcostdorsal horneconomic costenhanced green fluorescent proteinevidence basegenetic profilingin vivoinflammatory paininnovationinsightmolecular phenotypenerve injuryneuronal excitabilitynext generationnovelnovel therapeutic interventionpain perceptionpain sensationpain signalpainful neuropathypatch clampresponsesciatic nervesciatic nerve damagesensory inputtranscriptome sequencingtransmission process
项目摘要
Project Summary/Abstract
While chronic pain represents a massive public health problem with a staggering economic cost of
$560-$635 billion each year in the U.S. alone, the molecular mechanisms driving neuronal hyperexcitability
within nociceptive pathways remain incompletely understood. Significant progress has been made towards
elucidating the genetic heterogeneity of primary sensory neurons and their plasticity in the aftermath of nerve
or tissue damage. However, much less is known about the comprehensive molecular profile of those neurons
that convey nociceptive information from the spinal cord to the brain, despite their clear importance for pain
perception. A better understanding of the complete pattern of gene expression within spinal projection neurons
could reveal new evidence-based strategies to selectively dampen the output of the spinal nociceptive network
as a means to alleviate chronic pain. The long-term goal is to better understand how nerve and tissue damage
alter the function of nociceptive circuits in the CNS. The objective of this application is to identify injury-evoked
changes in gene expression within spinal projection neurons that enhance their firing under chronic pain
conditions. The central hypothesis is that ascending spinal projection neurons exhibit a unique molecular
phenotype that is significantly modulated by peripheral injury to promote membrane hyperexcitability. The
rationale for the proposed work is that the identification of genes that are preferentially expressed in spinal
projection neurons will yield new pharmacological approaches to suppress the ascending flow of nociceptive
information to the brain, while minimizing unwanted disruptions to global sensorimotor processing within the
spinal cord. The central hypothesis will be tested by pursuing the following specific aims: (1) Identify genes
that are enriched in ascending projection neurons within the adult spinal cord; and (2) Elucidate changes in
gene expression in projection neurons under chronic pain conditions that increase membrane excitability.
These aims will be accomplished by using translating ribosome affinity purification (TRAP) and next generation
RNA sequencing techniques in combination with bioinformatics, electrophysiological, immunohistochemical
and in situ hybridization approaches. The proposed work is innovative because it will reveal, for the first time,
the genetic phenotype of those neurons connecting the spinal nociceptive circuit to the mouse brain that are
critically involved in the generation of neuropathic and inflammatory pain, as well as elucidate how the
molecular signature of this population changes during the chronic pain state. The outcome of these
investigations will be the discovery of new, cell type-specific markers of spinal projection neurons and the
identification of potential genetic mechanisms by which peripheral injuries can amplify the “gain” of nociceptive
transmission in the spinal cord. As a result, the proposed research is significant because it will reveal novel
molecular targets which could be manipulated to selectively silence ascending spinal projection neurons after
injury, in order to evoke safe and effective analgesia while minimizing undesirable side effects.
项目概要/摘要
虽然慢性疼痛代表了一个巨大的公共卫生问题,造成了惊人的经济损失
仅在美国,驱动神经过度兴奋的分子机制每年就花费 560-6350 亿美元
伤害感受途径的研究尚未完全明了。
阐明初级感觉神经元的遗传异质性及其在神经后的可塑性
然而,人们对这些神经元的全面分子特征知之甚少。
尽管它们对疼痛很重要,但它们将伤害性信息从脊髓传递到大脑
更好地理解脊髓投射神经元内基因表达的完整模式。
可以揭示新的基于证据的策略来选择性抑制脊髓伤害性网络的输出
作为缓解慢性疼痛的一种手段,长期目标是更好地了解神经和组织损伤的方式。
改变中枢神经系统中伤害性回路的功能 该应用的目的是识别损伤诱发的。
脊髓投射神经元内基因表达的变化增强了慢性疼痛下的放电
中心假设是上行脊髓投射神经元表现出独特的分子。
受外周损伤显着调节以促进膜过度兴奋的表型。
拟议工作的基本原理是鉴定在脊髓中优先表达的基因
投射神经元将产生新的药理学方法来抑制伤害感受的上升流
向大脑发送信息,最大限度地减少对大脑中整体感觉运动处理的不必要的干扰
中心假设将通过追求以下具体目标来检验:(1)识别基因。
成人脊髓内富含上行投射神经元;(2) 阐明
在慢性疼痛条件下投射神经元的基因表达增加了膜的兴奋性。
这些目标将通过使用翻译核糖体亲和纯化(TRAP)和下一代技术来实现
RNA测序技术与生物信息学、电生理学、免疫组织化学相结合
和原位杂交方法是创新的,因为它将首次揭示,
将脊髓伤害感受回路连接到小鼠大脑的那些神经元的遗传表型
关键参与神经性疼痛和炎性疼痛的产生,并阐明如何
该人群的分子特征在慢性疼痛状态下发生变化。
研究将发现脊髓投射神经元的新的细胞类型特异性标记物以及
识别潜在的遗传机制,通过这些机制外周损伤可以放大伤害感受的“增益”
因此,这项研究意义重大,因为它将揭示新的内容。
分子靶标可被操纵以选择性地沉默上行脊髓投射神经元
伤害,以引起安全有效的镇痛,同时最大限度地减少不良副作用。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Transcriptional profile of spinal dynorphin-lineage interneurons in the developing mouse.
发育中小鼠脊髓强啡肽谱系中间神经元的转录谱。
- DOI:10.1097/j.pain.0000000000001636
- 发表时间:2019-06-03
- 期刊:
- 影响因子:7.4
- 作者:Elizabeth K. Serafin;Ale;er G Chamessian;er;Jie Li;Xiang Zhang;Am;a M. McGann;a;C. Brewer;T. Berta;M. Baccei
- 通讯作者:M. Baccei
Single-nucleus characterization of adult mouse spinal dynorphin-lineage cells and identification of persistent transcriptional effects of neonatal hindpaw incision.
成年小鼠脊髓强啡肽谱系细胞的单核特征和新生儿后爪切口持续转录效应的鉴定。
- DOI:10.1097/j.pain.0000000000002007
- 发表时间:2021-01
- 期刊:
- 影响因子:7.4
- 作者:Serafin EK;Paranjpe A;Brewer CL;Baccei ML
- 通讯作者:Baccei ML
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark L Baccei其他文献
Mark L Baccei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark L Baccei', 18)}}的其他基金
Neuromodulatory regulation of synaptic plasticity in spinal nociceptive circuits
脊髓伤害感受回路突触可塑性的神经调节
- 批准号:
10589933 - 财政年份:2022
- 资助金额:
$ 23.99万 - 项目类别:
Neuromodulatory regulation of synaptic plasticity in spinal nociceptive circuits
脊髓伤害感受回路突触可塑性的神经调节
- 批准号:
10444455 - 财政年份:2022
- 资助金额:
$ 23.99万 - 项目类别:
Identification of novel analgesic targets in ascending spinal projection neurons
上行脊髓投射神经元中新型镇痛靶点的鉴定
- 批准号:
9398593 - 财政年份:2017
- 资助金额:
$ 23.99万 - 项目类别:
Synaptic function within mature central pain networks after neonatal injury
新生儿损伤后成熟中枢疼痛网络内的突触功能
- 批准号:
8739319 - 财政年份:2013
- 资助金额:
$ 23.99万 - 项目类别:
Synaptic function within mature central pain networks after neonatal injury
新生儿损伤后成熟中枢疼痛网络内的突触功能
- 批准号:
8629852 - 财政年份:2013
- 资助金额:
$ 23.99万 - 项目类别:
Synaptic function within mature central pain networks after neonatal injury
新生儿损伤后成熟中枢疼痛网络内的突触功能
- 批准号:
9291516 - 财政年份:2013
- 资助金额:
$ 23.99万 - 项目类别:
Synaptic Function within Mature Central Pain Networks after Neonatal Injury
新生儿损伤后成熟中枢疼痛网络内的突触功能
- 批准号:
10560478 - 财政年份:2013
- 资助金额:
$ 23.99万 - 项目类别:
Synaptic Function within Mature Central Pain Networks after Neonatal Injury
新生儿损伤后成熟中枢疼痛网络内的突触功能
- 批准号:
10343830 - 财政年份:2013
- 资助金额:
$ 23.99万 - 项目类别:
Synaptic Function within Mature Central Pain Networks after Neonatal Injury
新生儿损伤后成熟中枢疼痛网络内的突触功能
- 批准号:
9883847 - 财政年份:2013
- 资助金额:
$ 23.99万 - 项目类别:
Synaptic Function within Mature Central Pain Networks after Neonatal Injury
新生儿损伤后成熟中枢疼痛网络内的突触功能
- 批准号:
9760819 - 财政年份:2013
- 资助金额:
$ 23.99万 - 项目类别:
相似国自然基金
套期会计有效性的研究:实证检验及影响机制
- 批准号:72302225
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
全生命周期视域的会计师事务所分所一体化治理与审计风险控制研究
- 批准号:72372064
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
兔死狐悲——会计师事务所同侪CPA死亡的审计经济后果研究
- 批准号:72302197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
上市公司所得税会计信息公开披露的经济后果研究——基于“会计利润与所得税费用调整过程”披露的检验
- 批准号:72372025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332003
- 批准年份:2023
- 资助金额:166 万元
- 项目类别:重点项目
相似海外基金
An in vitro electrophysiology system for high-throughput measurement of cardiomyocyte action potential
用于高通量测量心肌细胞动作电位的体外电生理系统
- 批准号:
10759677 - 财政年份:2023
- 资助金额:
$ 23.99万 - 项目类别:
Troponin I serine 150 phosphorylation as a novel cardiac inotrope
肌钙蛋白 I 丝氨酸 150 磷酸化作为新型强心剂
- 批准号:
10679400 - 财政年份:2023
- 资助金额:
$ 23.99万 - 项目类别:
The Noisy Life of the Musician: Implications for Healthy Brain Aging
音乐家的喧闹生活:对大脑健康老化的影响
- 批准号:
10346105 - 财政年份:2022
- 资助金额:
$ 23.99万 - 项目类别:
Ultra-High-Throughput Plate Reader for Drug Discovery Using All-Optical Electrophysiology
使用全光学电生理学进行药物发现的超高通量读板机
- 批准号:
10704010 - 财政年份:2022
- 资助金额:
$ 23.99万 - 项目类别:
Contribution of Local Translation to Nerve Injury-Induced Upregulation of Nav1.1 in Trigeminal Nerves
局部翻译对神经损伤引起的三叉神经 Nav1.1 上调的贡献
- 批准号:
10382015 - 财政年份:2022
- 资助金额:
$ 23.99万 - 项目类别: