Molecular Mechanisms of Myoblast Fusion
成肌细胞融合的分子机制
基本信息
- 批准号:10928438
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-18 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAdaptor Signaling ProteinAddressAnabolismBiological AssayBiological MetamorphosisBiologyBundlingCell Adhesion MoleculesCell fusionCell membraneCellsCicatrixCo-ImmunoprecipitationsComplexCytoplasmic TailCytoskeletal ModelingCytoskeletonDataDefectDegenerative DisorderDiseaseDrosophila genusDynaminEcdysoneEmbryoEmbryonic DevelopmentEnzymesExhibitsF-ActinFingersGenesGenetic ModelsGenetic ScreeningGenetic TranscriptionGrantGuanine Nucleotide Exchange FactorsGuanosine Triphosphate PhosphohydrolasesHealthHumanInvadedLifeLinkLiquid substanceMammalsMediatingMembraneMembrane FusionMolecularMoltingMuscleMuscle CellsMuscle DevelopmentMuscle FibersMuscle satellite cellMyoblastsMyopathyNatural regenerationOrganPhasePhysical condensationPolymersProcessProteinsRoleSH3 DomainsSeriesSignal TransductionSiteSkeletal MuscleStructureSynapsesSystemTestingTherapeuticTissuesTranscriptional ActivationWaspsWorkcellular transductioncongenital myopathyecdysone receptorembryo tissueexperimental studyflyhormonal signalsin vivoinsightmuscle physiologymuscle regenerationmutantmyogenesisnoveloverexpressionpolymerizationprogramsrecruitresponsesatellite cellsteroid hormone
项目摘要
PROJECT SUMMARY
Skeletal muscle is a unique organ that is composed of multinucleate muscle fibers, each of which is the
product of fusion of hundreds or even thousands of myoblasts. Myoblast fusion is not only important for
skeletal muscle development, but also critical for satellite cell-based muscle regeneration. Despite a large body
of studies over several decades, the mechanisms underlying myoblast fusion in humans remain poorly
understood. Studies in the fruit fly Drosophila have revealed unprecedented insights into the molecular and
cellular mechanisms of myoblast fusion. The striking evolutionary conservation between fly and mammalian
myogenesis makes Drosophila a particularly relevant system to study myoblast fusion in vivo. Recent studies
from our lab have uncovered a novel cellular mechanism underlying myoblast fusion. We show that myoblast
fusion is mediated by F-actin-enriched podosome-like structure (PLS), which invades the apposing fusion
partner with multiple protrusive fingers leading to fusion pore formation. Despite the discovery of the PLS, how
the fusion signal is transduced from the cell adhesion molecule to the actin cytoskeleton remains unclear. In
this proposal, we will address two long-standing questions in myoblast fusion – how the myoblast fusion
program is initiated in muscle cells and how the fusion signal is transduced from the cell adhesion molecules to
the actin cytoskeleton. We will characterize the surprising inter-organ ecdysone signaling in the transcriptional
activation of muscle-specific genes, investigate the mechanism by which phase separation organizes the
fusion machinery, and elucidate the function of an Arf GEF in regulating actin polymerization at the fusogenic
synapse. Our mechanistic studies will lead to significant insights into skeletal muscle development and
regeneration.
项目摘要
骨骼肌是由多核肌肉纤维组成的独特器官
肌细胞融合不仅对
骨骼肌发育,但对于基于卫星细胞的肌肉再生至关重要。尽管身体很大
在数十年的研究中,人类成肌细胞融合的基础机制仍然很差
理解。果蝇果蝇的研究表明,对分子和
肌细胞融合的细胞机制。苍蝇和哺乳动物之间的惊人进化保护
肌发生使果蝇成为研究体内成肌细胞融合的特别相关系统。最近的研究
从我们的实验室中发现了肌细胞融合的基础的一种新型细胞机制。我们证明肌细胞
融合是由富含F-肌动蛋白富集的Podosom类样结构(PLS)介导的,该结构(PLS)入侵了融合
与多个突出的手指合作,导致融合孔的形成。尽管发现了PL,但如何
融合信号从细胞粘附分子转换为肌动蛋白细胞骨架尚不清楚。在
该建议,我们将在成肌细胞融合中解决两个长期存在的问题 - 成肌细胞融合如何
程序是在肌肉细胞中启动的,以及如何将融合信号从细胞粘合分子转换为
肌动蛋白细胞骨架。我们将表征转录中令人惊讶的器官间ecdysone信号传导
激活肌肉特异性基因,研究相分离组织的机制
融合机械,并阐明ARF GEF在控制肌动蛋白聚合在融合蛋白方面的功能
突触。我们的机械研究将导致对骨骼肌发育和
再生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elizabeth H Chen其他文献
Elizabeth H Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elizabeth H Chen', 18)}}的其他基金
Skeletal Muscle: Development, Regeneration and Disease
骨骼肌:发育、再生和疾病
- 批准号:
10237575 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Investigating mechanisms of vertebrate myoblast fusion using zebrafish as a model
以斑马鱼为模型研究脊椎动物成肌细胞融合机制
- 批准号:
10213657 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Investigating mechanisms of vertebrate myoblast fusion using zebrafish as a model
以斑马鱼为模型研究脊椎动物成肌细胞融合机制
- 批准号:
10408109 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Investigating mechanisms of vertebrate myoblast fusion using zebrafish as a model
以斑马鱼为模型研究脊椎动物成肌细胞融合机制
- 批准号:
10628046 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
相似海外基金
Poldip2 and the Brain Endothelial Barrier Function: Understanding Mechanisms that Regulate the Blood Brain Barrier Integrity
Poldip2 和脑内皮屏障功能:了解调节血脑屏障完整性的机制
- 批准号:
10658239 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Defining WASp-dependent pathways in replication stress
定义复制应激中的 WASp 依赖性途径
- 批准号:
10708353 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Alterations of leukocyte integrin signaling leading to diabetes and autoimmunity
白细胞整合素信号的改变导致糖尿病和自身免疫
- 批准号:
10502136 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
LIM domain kinases: regulation and substrate recognition
LIM 结构域激酶:调节和底物识别
- 批准号:
10443356 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别: