Microfabricated all-diamond microelectrode arrays for neurotransmitter sensing and extracellular recording
用于神经递质传感和细胞外记录的微加工全金刚石微电极阵列
基本信息
- 批准号:10563205
- 负责人:
- 金额:$ 57.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAdoptedAdultAmplifiersBehaviorBiocompatible MaterialsBlood - brain barrier anatomyBrainBrain DiseasesBrain regionCell DeathChemicalsChemistryChronicCicatrixClinicalClinical ResearchCommunitiesComplexComputer softwareCorpus striatum structureData AnalysesDetectionDevelopmentDevice DesignsDevicesDiamondDimensionsDopamineDrug AddictionElectrochemistryElectrodesElectronicsElectrophysiology (science)EncapsulatedEngineeringFiberFilmFutureGeometryGoalsHandHeadHybridsImmunohistochemistryImplantImplanted ElectrodesIndividualInflammationLateralLightLongevityMapsMeasurementMechanicsMicroelectrodesMiniaturizationMissionMonitorMorphologyNerve TissueNeurologicNeuronsNeurosciencesNeurotransmittersNoiseNorth CarolinaParkinson DiseasePerformancePeriodicityPropertyPublic HealthRattusResearch PersonnelResolutionSafetyScanningSchizophreniaSemiconductorsSignal TransductionSiteSpecificitySurfaceSystemSystems IntegrationTechniquesTechnologyTimeUnited States National Institutes of HealthUniversitiesWorkbiomaterial compatibilitycarbon fibercost efficientdata acquisitiondata integrationdensitydesigndetection limitelectric impedanceelectron beam lithographyexperienceextracellularfabricationflexibilityfundamental researchimplantationin vivoinnovationinstrumentlarge scale productionlithographymanufacturemechanical propertiesmetermillisecondminiaturizeminimally invasivemultidisciplinarynanofabricationneuralneural implantneurochemistryneurophysiologynoveloperationresponsesensor technologyspatiotemporalstudy characteristicssubmicrontechnological innovationtooltwo-dimensionalultraviolet
项目摘要
PROJECT SUMMARY
Complete understanding of brain function requires reliable and comprehensive mapping of large-scale brain
networks with high spatiotemporal resolution and minimum invasiveness. Tools to achieve such mapping must
overcome a myriad of challenges that are not adequately or simultaneously addressed by any existing
technology. Hence the overall goal of this proposal is to develop a new diamond-based neural interface system
that consists of up to 256 recording sites in mm3-sized volumes for combined electrical and chemical
detection of neuronal activity in living nerve tissues. The proposed innovative tool will have the following
significant advantages over existing technologies. First, highly-conductive BDD electrodes will simultaneously
enhance the sensitivity, selectivity, and stability of neurological sensing. They will also have a greater potential
range of operation than current electrode materials. Second, by using undoped PCD as a hermetic,
biocompatible, and low-fouling encapsulation material, the new device will potentially have greater longevity and
long-term stability for chronic applications. Third, a compact, dual-mode headstage will better enable the
control of electrophysiology and fast-scan cyclic voltammetric (FSCV) measurements with high precision and a
strong signal-to-noise ratio, while minimizing crosstalk. Fourth, the novel micromachining technique will
permit wafer-level, mass production of diamond electrodes with various geometries, fine spatial resolution
(submicrometer to micrometer scale), and high yields (>90%). Adopted from well-established semiconductor
manufacturing techniques, the proposed fabrication approach is more reliable, consistent, scalable, and
labor/cost-efficient than the hand assembly approach that is widely used today for making carbon fiber electrodes.
Last but not least, 3D arrays of highly packed electrodes will significantly enhance the lateral and depth
coverage of the new electrochemical detection tools compared to current chemical sensing tools. The project
will be conducted by a multidisciplinary, collaborative team of researchers. The team will leverage their extensive
experience in developing diamond fiber electrodes and in refining material synthesis and device fabrication
techniques to push the spatial resolution of diamond electrodes from several tens of microns to submicrometer
(via electron-beam lithography) and to micrometer (via ultraviolet lithography) (Aim 1). In parallel with electrode
development, the team will engineer solutions to implement miniaturized head-mounted electrophysiology and
FSCV electronics, and integrate the headstage with diamond electrode arrays to achieve a complete system
(Aim 2). The functionality, biocompatibility, and stability of the integrated system will then be assessed ex vivo
and in vivo using complementary analysis techniques (Aim 3). The proposed work is significant because it will
yield a revolutionary neural interface tool that can be readily disseminated to other researchers for use in
neuroscience and clinical studies to reveal the mechanisms underlying many brain disorders and diseases.
项目概要
完整了解大脑功能需要可靠且全面的大规模大脑绘图
具有高时空分辨率和最小侵入性的网络。实现此类映射的工具必须
克服任何现有技术都无法充分或同时解决的无数挑战
技术。因此,该提案的总体目标是开发一种新的基于金刚石的神经接口系统
由多达 256 个 mm3 大小的记录点组成,用于结合电气和化学
检测活体神经组织中的神经元活动。拟议的创新工具将具有以下特点
与现有技术相比具有显着优势。首先,高导电BDD电极将同时
增强神经传感的灵敏度、选择性和稳定性。他们也将拥有更大的潜力
比目前的电极材料的操作范围。其次,通过使用未掺杂的 PCD 作为密封件,
生物相容性和低污染封装材料,新设备将有可能具有更长的使用寿命和
长期应用的长期稳定性。第三,紧凑的双模前置放大器将更好地实现
高精度和快速扫描循环伏安 (FSCV) 测量的控制
强大的信噪比,同时最大限度地减少串扰。第四,新型微加工技术将
允许晶圆级大规模生产具有各种几何形状、精细空间分辨率的金刚石电极
(亚微米到微米尺度)和高产率(>90%)。采用成熟半导体
制造技术,所提出的制造方法更加可靠、一致、可扩展,并且
比当今广泛用于制造碳纤维电极的手工组装方法更具劳动力/成本效益。
最后但并非最不重要的一点是,高度堆积的电极 3D 阵列将显着增强横向和深度
与当前化学传感工具相比,新型电化学检测工具的覆盖范围。项目
将由多学科的研究人员协作团队进行。该团队将利用其广泛的
具有开发金刚石纤维电极以及精炼材料合成和设备制造的经验
将金刚石电极的空间分辨率从几十微米提升到亚微米的技术
(通过电子束光刻)和微米(通过紫外光刻)(目标 1)。与电极并联
开发过程中,该团队将设计解决方案来实施小型化头戴式电生理学和
FSCV 电子器件,并将探头与金刚石电极阵列集成以实现完整的系统
(目标 2)。然后将对集成系统的功能、生物相容性和稳定性进行离体评估
以及体内使用补充分析技术(目标 3)。拟议的工作意义重大,因为它将
产生了一种革命性的神经接口工具,可以很容易地传播给其他研究人员用于
神经科学和临床研究揭示了许多大脑紊乱和疾病的机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wen Li其他文献
Wen Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wen Li', 18)}}的其他基金
Placental barrier culture to delineate the mechanism of hepatitis E virus infection at the maternal and fetal interface
胎盘屏障培养描绘母体和胎儿界面戊型肝炎病毒感染的机制
- 批准号:
10716971 - 财政年份:2023
- 资助金额:
$ 57.67万 - 项目类别:
A Neurosensory Account of Posttraumatic Stress Disorder
创伤后应激障碍的神经感觉学解释
- 批准号:
10607183 - 财政年份:2023
- 资助金额:
$ 57.67万 - 项目类别:
Deficient inhibition underlies salience network hyperactivity in stress and anxiety
抑制不足是压力和焦虑中显着网络过度活跃的基础
- 批准号:
10377665 - 财政年份:2022
- 资助金额:
$ 57.67万 - 项目类别:
Deficient inhibition underlies salience network hyperactivity in stress and anxiety
抑制不足是压力和焦虑中显着网络过度活跃的基础
- 批准号:
10559649 - 财政年份:2022
- 资助金额:
$ 57.67万 - 项目类别:
Microfabricated all-diamond microelectrode arrays for neurotransmitter sensing and extracellular recording
用于神经递质传感和细胞外记录的微加工全金刚石微电极阵列
- 批准号:
10337137 - 财政年份:2020
- 资助金额:
$ 57.67万 - 项目类别:
Strategy for combining circulating tumor DNA (ctDNA) and magnetic resonance imaging (MRI) measures of tumor burden for prediction of response and outcome in neoadjuvant-treated early breast cancer
结合循环肿瘤 DNA (ctDNA) 和肿瘤负荷磁共振成像 (MRI) 测量来预测新辅助治疗的早期乳腺癌的反应和结果的策略
- 批准号:
10311505 - 财政年份:2020
- 资助金额:
$ 57.67万 - 项目类别:
Strategy for combining circulating tumor DNA (ctDNA) and magnetic resonance imaging (MRI) measures of tumor burden for prediction of response and outcome in neoadjuvant-treated early breast cancer
结合循环肿瘤 DNA (ctDNA) 和肿瘤负荷磁共振成像 (MRI) 测量来预测新辅助治疗的早期乳腺癌的反应和结果的策略
- 批准号:
10523117 - 财政年份:2020
- 资助金额:
$ 57.67万 - 项目类别:
Enhancing CNS Drug Delivery By Manipulating The Blood-Brain Barrier
通过操纵血脑屏障增强中枢神经系统药物输送
- 批准号:
8384079 - 财政年份:2012
- 资助金额:
$ 57.67万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Morphologic and Kinematic Adaptations of the Subtalar Joint after Ankle Fusion Surgery in Patients with Varus-type Ankle Osteoarthritis
内翻型踝骨关节炎患者踝关节融合手术后距下关节的形态和运动学适应
- 批准号:
10725811 - 财政年份:2023
- 资助金额:
$ 57.67万 - 项目类别:
Alpha-emitter Imaging for Dosimetry and Treatment Planning
用于剂量测定和治疗计划的阿尔法发射体成像
- 批准号:
10713710 - 财政年份:2023
- 资助金额:
$ 57.67万 - 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10707830 - 财政年份:2023
- 资助金额:
$ 57.67万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 57.67万 - 项目类别:
Engineering Human Organizer To Study Left-Right Symmetry Breaking
工程人类组织者研究左右对称性破缺
- 批准号:
10667938 - 财政年份:2023
- 资助金额:
$ 57.67万 - 项目类别: