Maternal mHealth blood hemoglobin analysis with informed deep learning
通过知情深度学习进行孕产妇 mHealth 血液血红蛋白分析
基本信息
- 批准号:10566426
- 负责人:
- 金额:$ 47.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAfricanAlgorithmsAnemiaBiologicalBloodCellular PhoneClinicalClinical DataColorComplexComputational algorithmDataDevicesDiagnosisDiagnosticDiseaseElectronic Health RecordEnvironmentEquipmentEyelid structureFetal healthFoundationsGoalsHealth Services AccessibilityHealth TechnologyHemoglobinHemoglobin concentration resultHomeHyperbilirubinemiaIatrogenesisImageImpaired healthInfusion proceduresKenyaLaboratoriesLearningLightMachine LearningMalariaManualsMaternal HealthMeasuresMethodologyMethodsMobile Health ApplicationModelingMorbidity - disease rateOpticsOutcomeOxygenPainPatient CarePerformancePerfusionPeripheralPersonsPopulationPregnancyPregnant WomenProcessPublic HealthPulse OximetryRecoveryResearchResource-limited settingResourcesRuralSickle Cell AnemiaSiteSpectrum AnalysisStructure of palpebral conjunctivaTechnologyTelemedicineTestingTissuesTranslational ResearchWorkautomated algorithmbiomedical informaticsclinical practicecostdata acquisitiondeep learningdesigndigitaldigital healthelectronic health record systemhealth of the motherimplementation scienceimprovedinnovationlearning algorithmlow and middle-income countriesmHealthmachine visionmobile applicationmortalitynext generationpatient screeningpoint of carereconstructionremote patient monitoringsensorsignal processing
项目摘要
PROJECT SUMMARY/ABSTRACT
Blood hemoglobin (Hgb) testing is a common clinical laboratory test during routine patient care and screening.
In particular, blood Hgb tests are essential for the diagnosis and management of anemia. Globally, over 40% of
pregnant women are anemic, adversely affecting maternal and fetal health outcomes through increased
morbidity and mortality. A range of treatments for anemia are well-established and readily available even in
low- and middle-income countries. In these settings, the main challenge is that anemia is not detected or
detected too late. For pregnant women in resource-limited settings who require several Hgb tests during all
trimesters, conventional invasive blood Hgb tests are not only painful and iatrogenic, but are also expensive
and often inaccessible. Existing noninvasive devices and smartphone-based technologies for measuring blood
Hgb levels often rely on costly specialized equipment and complex smartphone attachments, thus hampering
practical translation from research to clinical practice in resource-limited settings. Based on the preliminary
results generated by our transdisciplinary team, we hypothesize that blood Hgb levels can be accurately and
precisely predicted from a red-green-blue (RGB) image of the inner eyelid (palpebral conjunctiva) acquired
using a smartphone camera with no additional attachments, and that this mobile health (mHealth) application
can be fully integrated with an existing electronic health record (EHR) system in low-resource settings.
Specifically, an informed learning approach will enable us to incorporate a physical or biological understanding
into the learning algorithms to overcome the limitations of purely data-driven machine learning. Our team,
consisting of experts in optical spectroscopy and machine learning, biomedical informatics and implementation
science, and maternal and public health, proposes three aims to achieve the project goals. In Aim 1, we will
develop a robust, simple, frontend data acquisition method for various mHealth and digital health settings. A
tissue-specific color gamut design and true color recovery will provide the first-of-its-kind systematic
methodology to realize color accuracy that will be highly sensitive to blood Hgb. In Aim 2, we will perfect the
core mHealth computational algorithm using clinical data of black African pregnant women. Sub-algorithms of
automated inner eyelid demarcation, advanced spectral learning, and blood Hgb content computation will
enable fully automated, highly accurate, and precise blood Hgb estimations. Tissue optics-informed spectral
learning will capture strong nonlinearity between RGB values and spectral intensity directly in the spectral
domain. In Aim 3, we will integrate mHealth blood Hgb technology with a widely used EHR and evaluate the
backend performance. The proposed connected mHealth technology will demonstrate the possibility of offering
mobility, simplicity, and affordability for rapid and scalable adaptation, maximizing the currently available
resources in resource-limited settings. Our work can also provide reciprocal innovation to offer advanced
mHealth and digital health technologies combined with telemedicine in rural and at-home settings in the US.
项目摘要/摘要
血液血红蛋白(HGB)测试是常规患者护理和筛查期间常见的临床实验室测试。
特别是,血液HGB测试对于贫血的诊断和管理至关重要。全球,超过40%
孕妇是贫血的,对孕产妇和胎儿健康的影响通过增加而受到不利影响
发病率和死亡率。贫血的一系列治疗范围已建立了良好,即使在
低收入和中等收入国家。在这些情况下,主要的挑战是未发现贫血或
检测到为时已晚。适用于资源有限的设置中的孕妇
三个常规的侵入性血液HGB测试不仅疼痛和医源性,而且还很昂贵
而且常常无法访问。现有的无创设备和基于智能手机的技术来测量血液
HGB水平通常依赖于昂贵的专业设备和复杂的智能手机附件,从而阻碍
从研究到资源有限设置的临床实践的实际翻译。基于初步
我们的跨学科团队产生的结果,我们假设血液HGB水平可以准确,并且
从获得的内眼睑(Palpebral Conjunctiva)的红绿色蓝色(RGB)图像中精确预测
使用没有其他附件的智能手机相机,并且该移动健康(MHealth)应用程序
可以在低资源设置中与现有的电子健康记录(EHR)系统完全集成。
具体而言,明智的学习方法将使我们能够融入物理或生物学理解
进入学习算法,以克服纯粹数据驱动的机器学习的局限性。我们的团队,
由光谱和机器学习,生物医学信息学和实施方面的专家组成
科学以及孕产妇和公共卫生提出了三个旨在实现项目目标的目标。在AIM 1中,我们将
为各种MHealth和数字健康设置开发强大,简单,前端的数据采集方法。一个
组织特异性的颜色域设计和真实的颜色恢复将提供首个系统的系统
实现对血液HGB高度敏感的颜色准确性的方法。在AIM 2中,我们将完善
使用黑人非洲孕妇的临床数据核心MHealth计算算法。的子算法
自动内眼睑分界,高级光谱学习和血液HGB含量计算将
实现完全自动化,高度准确且精确的血液HGB估计。组织光学的光谱
学习将在光谱中直接捕获RGB值和光谱强度之间的强烈非线性
领域。在AIM 3中,我们将将MHealth血液HGB技术与广泛使用的EHR整合在一起,并评估
后端性能。拟议的互联MHealth技术将证明提供的可能性
快速和可扩展适应的机动性,简单性和负担能力,最大化当前可用的
资源有限设置中的资源。我们的工作还可以提供相互的创新以提供高级
MHealth和Digital Health Technologies与美国农村和家居环境中的远程医疗相结合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Young L Kim其他文献
Association of Noninvasive Peripheral Blood Hemoglobin Assessments with Venous Blood Draws Among Sickle Cell Patients
- DOI:
10.1182/blood-2022-165132 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:
- 作者:
Sang Mok Park;Yuhyun Ji;Semin Kwon;Andrew RW O'Brien;Ying Wang;Young L Kim - 通讯作者:
Young L Kim
Dynamically controlled random lasing with colloidal titanium carbide MXene
使用胶体碳化钛 MXene 动态控制随机激光
- DOI:
10.1364/ome.398132 - 发表时间:
2020-09 - 期刊:
- 影响因子:2.8
- 作者:
Zhuoxian Wang;Shaimaa I Azzam;Xiangeng Meng;Mohamed Alhabeb;Krishnakali Chaudhuri;Kathleen Maleski;Young L Kim;Alex;er V Kildishev;Vladimir M Shalaev;Yuri Gogotsi;Alex;ra Boltasseva - 通讯作者:
ra Boltasseva
Remote Blood Hemoglobin Monitoring with Hyperspectral Color Truthing for Advancing Sickle Cell Care
- DOI:
10.1182/blood-2023-190659 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:
- 作者:
Sang Mok Park;Yuhyun Ji;Semin Kwon;Jung Woo Leem;Andrew Ross Wickman O'Brien;Ying Wang;Young L Kim - 通讯作者:
Young L Kim
Young L Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Young L Kim', 18)}}的其他基金
Risk stratification of malaria among school-age children with mHealth spectroscopy of blood analysis
利用血液分析的移动健康光谱对学龄儿童疟疾进行风险分层
- 批准号:
10527037 - 财政年份:2022
- 资助金额:
$ 47.86万 - 项目类别:
Risk stratification of malaria among school-age children with mHealth spectroscopy of blood analysis
利用血液分析的移动健康光谱对学龄儿童疟疾进行风险分层
- 批准号:
10704123 - 财政年份:2022
- 资助金额:
$ 47.86万 - 项目类别:
Laboratory test-comparable mobile assessments of hemoglobin for anemia detection
用于贫血检测的血红蛋白实验室测试可比移动评估
- 批准号:
9341800 - 财政年份:2017
- 资助金额:
$ 47.86万 - 项目类别:
Hotspot imaging for risk stratification of non-melanoma skin cancer in a pilot st
试点研究中用于非黑色素瘤皮肤癌风险分层的热点成像
- 批准号:
8010085 - 财政年份:2010
- 资助金额:
$ 47.86万 - 项目类别:
Hotspot imaging for risk stratification of non-melanoma skin cancer in a pilot st
试点研究中用于非黑色素瘤皮肤癌风险分层的热点成像
- 批准号:
8109402 - 财政年份:2010
- 资助金额:
$ 47.86万 - 项目类别:
相似海外基金
Genetic & Social Determinants of Health: Center for Admixture Science and Technology
遗传
- 批准号:
10818088 - 财政年份:2023
- 资助金额:
$ 47.86万 - 项目类别:
Enhanced Medication Management to Control ADRD Risk Factors Among African Americans and Latinos
加强药物管理以控制非裔美国人和拉丁裔的 ADRD 风险因素
- 批准号:
10610975 - 财政年份:2023
- 资助金额:
$ 47.86万 - 项目类别:
Germline Genetic Modifiers of Radiation Response
辐射反应的种系遗传修饰剂
- 批准号:
10741022 - 财政年份:2023
- 资助金额:
$ 47.86万 - 项目类别:
Small Molecule Therapeutics for Sickle Cell Anemia
镰状细胞性贫血的小分子疗法
- 批准号:
10601679 - 财政年份:2023
- 资助金额:
$ 47.86万 - 项目类别:
Moving Beyond the Individual- A Data-driven Approach to Improving the Evidence on the Role of Community and Societal Determinants of HIV among Adolescent Girls and Young Women in Sub-Saharan Africa
超越个人——采用数据驱动的方法来改善关于艾滋病毒在撒哈拉以南非洲地区少女和年轻妇女中的社区和社会决定因素的作用的证据
- 批准号:
10619319 - 财政年份:2023
- 资助金额:
$ 47.86万 - 项目类别: