Integrative risk modeling for early prediction of endometriosis and its long-term health outcomes
子宫内膜异位症早期预测及其长期健康结果的综合风险模型
基本信息
- 批准号:10567234
- 负责人:
- 金额:$ 71.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-15 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAgeAnxietyCase StudyCatalogingCatalogsChronicChronic DiseaseChronologyClinicalComputing MethodologiesDataDevelopmentDiagnosisDiagnosticDiseaseDistantDysmenorrheaEarly DiagnosisElectronic Health RecordEnvironmental Risk FactorEventFemale Genital DiseasesFutureGeneticGoalsGynecologicHealthHeterogeneityHigh Risk WomanHormonalIncidenceIndividualInfertilityInflammationKnowledgeLifeLife Cycle StagesLife StyleLinkLong-Term EffectsMachine LearningMalignant Female Reproductive System NeoplasmMalignant neoplasm of ovaryMapsMediatingMediatorMedicineMental DepressionMethodologyMethodsMissionModelingMorbidity - disease rateMyocardialNational Institute of Child Health and Human DevelopmentOrganOutcomePatient riskPatient-Focused OutcomesPatientsPelvisPhenotypePlayPopulationPrevalencePreventionPrevention strategyPreventive measurePublic HealthQuality of lifeRelative RisksReportingReproductionResearchRiskRisk AssessmentRisk EstimateRisk FactorsRoleScreening procedureSumSymptomsSystemic diseaseTestingTranslatingUnited StatesValidationVariantWomanWorkabstractingbiobankchronic pelvic painclinical practiceclinical predictorsclinical riskcomorbiditydisease heterogeneitydisorder riskearly screeningelectronic health record systemendometriosisepigenomicsgenetic variantgenome wide association studygenomic biomarkerheart disease riskhigh riskimprovedinflammatory markerinnovationlifetime risklong-term sequelaemodifiable riskmultimodalitynon-geneticnovelpersonalized medicinepolygenic risk scorepreventreproductiverisk predictionrisk prediction modelrisk sharingscreeningsymptomatologytimelinetool
项目摘要
More than 200,000 women are diagnosed with endometriosis every year and over half of those women
do not receive a definitive diagnosis until 8.5 years after the onset of symptoms and many times when
they present with additional comorbidities. While several studies have suggested that genomic markers,
environmental risk factors and inflammatory markers play crucial roles in endometriosis symptomatology,
there are no effective tools available to predict an individual's risk of developing endometriosis or to
predict its downstream effects. The long-term goal is to develop effective and non-invasive early
screening tools to identify patients at risk of developing endometriosis and predict long-term effects. The
main objective of this project is the development of models to predict the risk of endometriosis across
varied clinical manifestations and associated long-term health outcomes. Our central hypothesis is that
integrative risk models will successfully identify patients at risk of developing endometriosis and
associated diseases that occur either concurrently with endometriosis (reproductive age) or after
endometriosis development (long-term health outcomes), enabling early diagnosis and prevention. This
general hypothesis will be tested via the following specific aims:(1) Develop an integrative risk model to
predict patients at high risk of developing endometriosis; (2) Develop an integrative risk model combining
genetic and nongenetic risk factors to predict clinical manifestations among women with endometriosis ;
(3) Create a lifelong chronological map of endometriosis to identify individuals at risk of developing
associated comorbidities. In aim 1, we will integrate genetic and non-genetic risk factors extracted from
Electronic Health Records in linear and non-linear fashion to generate an EndoRisk model. In aim 2, we
will generate a catalog of additional risk factors linked to various clinical manifestations of endometriosis
and develop risk model for varied manifestations. In aim 3, we will evaluate mediating risk of
endometriosis on associated comorbidities and develop a mediator risk prediction model for concomitant
conditions and long-term health outcomes. At the successful completion of the proposed research, the
expected outcomes will be rigorously evaluated non-invasive computational methods for screening and
diagnosing endometriosis across various clinical manifestations and its long-term effects based on
genetic and non-genetic factors. The proposed research is innovative because our novel methodology
for integrated risk models will have immediate translational implications. These results will provide a
strong basis for future development of strategies for improving patient outcomes and translating the
knowledge to clinical practice by providing support for identifying patients at high, moderate, and mild
risk of endometriosis, which is expected to have a significant impact on women suffering from
endometriosis or its long-term effects by tailoring personalized treatments based on their relative risk.
每年有超过200,000名妇女被诊断出患有子宫内膜异位症,其中一半以上
直到症状发作后的8.5年,多次
他们提出了其他合并症。虽然几项研究表明基因组标记,但
环境危险因素和炎症标志物在子宫内膜异位症症状学中起着至关重要的作用,
没有可用的有效工具可以预测个人患子宫内膜异位症或
预测其下游效果。长期目标是早期发展有效和无创
筛查工具,以识别患有子宫内膜异位症风险并预测长期影响的患者。这
该项目的主要目的是开发模型,以预测整个子宫内膜异位症的风险
各种临床表现和相关的长期健康结果。我们的中心假设是
综合风险模型将成功识别出患有子宫内膜异位症风险的患者
与子宫内膜异位症(生殖年龄)或之后同时发生的相关疾病
子宫内膜异位发育(长期健康结果),可早期诊断和预防。这
一般假设将通过以下特定目的进行检验:(1)开发一个综合风险模型
预测患有子宫内膜异位症的高风险患者; (2)开发组合的综合风险模型
预测子宫内膜异位症女性临床表现的遗传和非遗传危险因素;
(3)创建终身子宫内膜异位症的年代表,以识别有发展风险的个体
相关的合并症。在AIM 1中,我们将整合从中提取的遗传和非遗传风险因素
线性和非线性方式的电子健康记录生成内虫模型。在AIM 2中,我们
将产生与子宫内膜异位症各种临床表现有关的其他风险因素的目录
并为各种表现形式开发风险模型。在AIM 3中,我们将评估中介的风险
对相关合并症的子宫内膜异位症并为伴随的中介风险预测模型开发
条件和长期健康结果。在成功完成拟议的研究时,
预期的结果将经过严格评估,用于筛选和
根据各种临床表现及其长期作用诊断子宫内膜异位症
遗传和非遗传因素。拟议的研究具有创新性,因为我们的新方法
对于综合风险模型,将具有立即的翻译含义。这些结果将提供
强大的基础,以发展改善患者预后和翻译的策略的发展依据
通过为识别高,中和温和的患者提供支持,了解临床实践的知识
子宫内膜异位症的风险,预计将对患有患者的妇女产生重大影响
子宫内膜异位症或其长期影响通过根据其相对风险来量身定制个性化治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHEFALI Setia VERMA其他文献
SHEFALI Setia VERMA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
恒星模型中氧元素丰度的变化对大样本F、G、K矮星年龄测定的影响
- 批准号:12303035
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于年龄和空间的非随机混合对性传播感染影响的建模与研究
- 批准号:12301629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
中国东部地区大气颗粒物的年龄分布特征及其影响因素的模拟研究
- 批准号:42305193
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 71.31万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 71.31万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 71.31万 - 项目类别:
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 71.31万 - 项目类别:
Identifying and Addressing the Effects of Social Media Use on Young Adults' E-Cigarette Use: A Solutions-Oriented Approach
识别和解决社交媒体使用对年轻人电子烟使用的影响:面向解决方案的方法
- 批准号:
10525098 - 财政年份:2023
- 资助金额:
$ 71.31万 - 项目类别: