Mechanisms of DNA helicases and their regulation
DNA解旋酶的机制及其调控
基本信息
- 批准号:10591506
- 负责人:
- 金额:$ 37.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-15 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:ArchaeaBiochemistryCellsDNADNA DamageDNA RepairDNA StructureDiseaseEnzymesEukaryotaFluorescence MicroscopyGenomeGoalsHumanLifeMaintenanceMalignant NeoplasmsMeasurementModelingMolecularMolecular ConformationMolecular MachinesNucleic AcidsOrganismPathologyPathway interactionsPlayProcessProkaryotic CellsProteinsRNARegulationResearchResolutionRoleStructural ModelsSystemVirusWorkbiophysical techniquesgenome integrityhelicasehuman diseaseinsightlaser tweezermemberoptic tweezerrecruitresponsesingle molecule
项目摘要
PROJECT SUMMARY / ABSTRACT
“Mechanisms of DNA helicases and their regulation”
Helicases are a ubiquitous and diverse group of molecular machines that separate the strands of nucleic acids.
They are essential actors in many genome maintenance processes in all domains of life, including some viruses.
As a result, helicases are biomedically important proteins, and their pathologies are associated with a number
of human diseases and cancer. Since uncontrolled unwinding is detrimental to genomic integrity, helicase activity
must be tightly regulated in the cell. Furthermore, since many helicases are able to play multiple, distinct roles
in a variety of cellular pathways, they must be activated only in the correct contexts. How these different functions
are defined and regulated remains poorly understood.
In this project, we will investigate the molecular mechanisms by which DNA helicases are regulated. Our
studies will focus on the model non-hexameric helicases UvrD, Rep, and XPD, which are critical components of
the cellular response to DNA damage in prokaryotes, eukaryotes, and archaea and also serve as prototypical
members of the two largest structural superfamilies of helicases. Insights gained on their mechanisms are
expected to extend to a number of structurally and functionally homologous systems.
Prior work by us and others has shown that these types of helicases have auxiliary domains and/or make
secondary contacts with DNA that play regulatory—often, auto-inhibitory—roles. Protein partners to helicases
have thus been proposed to activate helicase activity by controlling these mechanisms, thus defining helicase
roles in the cell. To gain insights into these mechanisms, our studies will focus on two main research goals:
understanding how interactions with DNA and non-canonical DNA structures control helicase activity (Goal 1),
and quantifying how encounters with accessory proteins—both protein partners that recruit and activate
helicases and proteins that compete for the same DNA substrates—regulate helicases (Goal 2).
Our approach for achieving these research goals will integrate advanced single-molecule biophysical
techniques—optical tweezers combined with fluorescence microscopy—together with traditional biochemistry
and computational biophysics methods. These approaches leverage our group's expertise and that of the
assembled collaborators, and have been successfully applied by us in our high-resolution measurements of
helicase unwinding and conformational dynamics, their modulation by interactions with accessory proteins, and
their connection to atomic-level structural models of helicases,. Beyond providing insights on helicase
mechanism and the genome maintenance pathways in which they participate, our studies will advance new
biophysical methods for investigating biomolecular dynamics.
项目摘要 /摘要
“ DNA解旋酶的机制及其调节”
解旋酶是一组无处不在的分子机器,可将核酸链分开。
它们是生命所有领域(包括某些病毒)的许多基因组维持过程中必不可少的参与者。
结果,解旋酶是生物医学上重要的蛋白质,它们的病理与数量有关
人类疾病和癌症。由于不受控制的放松剂对基因组完整性有害,因此解旋酶活性
必须在细胞中严格调节。此外,由于许多解旋酶能够扮演多个不同的角色
在多种细胞途径中,必须仅在正确的环境中激活它们。这些不同的功能如何
定义和监管仍然很少理解。
在这个项目中,我们将研究调节DNA解旋酶的分子机制。我们的
研究将重点放在模型的非尚面型解旋酶UVRD,REP和XPD上,它们是关键的组成部分
原核生物,真核生物和古细菌中对DNA损伤的细胞反应,也用作典型
两个最大的结构型超家族的成员。从他们的机制上获得的见解是
预计将扩展到许多结构和功能同源系统。
我们和其他人的先前工作表明,这些类型的解旋酶具有辅助域和/或制造
与播放调节性的DNA接触(通常是自动抑制性)。蛋白质伴侣的解旋酶
因此,已经提出通过控制这些机制来激活解旋酶活性,从而定义了解旋酶
在细胞中的作用。为了了解这些机制,我们的研究将重点介绍两个主要的研究目标:
了解与DNA和非典型DNA结构的相互作用如何控制解旋酶活性(目标1),,
并量化如何与辅助蛋白相遇 - 募集和激活的蛋白质伴侣
竞争相同DNA底物的解旋酶和蛋白质 - 调节解旋酶(目标2)。
我们实现这些研究目标的方法将整合先进的单分子生物物理
技术 - 光学镊子与荧光显微镜结合 - 与传统生物化学结合
和计算生物物理学方法。这些方法利用了我们小组的专业知识和
组装合作者,并已在我们的高分辨率测量中成功应用
解旋酶放松和构象动态,与附件蛋白质相互作用的调节,以及
它们与解旋酶的原子级结构模型的联系。除了提供有关解旋酶的见解之外
他们参与的机制和基因组维持途径,我们的研究将推进新的发展
研究生物分子动力学的生物物理方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yann R. Chemla其他文献
Direct Measurement of Stepping Dynamics of <em>E. coli</em> UvrD Helicase
- DOI:
10.1016/j.bpj.2019.11.565 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Sean P. Carney;Kevin D. Whitley;Wen Ma;Haifeng Jia;Timothy M. Lohman;Zaida Luthey-Schulten;Yann R. Chemla - 通讯作者:
Yann R. Chemla
Molecular Mechanism of Conformational Switching that Regulates Helicase Function
- DOI:
10.1016/j.bpj.2019.11.566 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Wen Ma;Sean Carney;Yann R. Chemla;Zaida Luthey-Schulten;J. Andrew McCammon - 通讯作者:
J. Andrew McCammon
Chaperone-protein interactions in live zebrafish larvae
- DOI:
10.1016/j.bpj.2022.11.2563 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Aniket Ravan;Yann R. Chemla;Martin Gruebele - 通讯作者:
Martin Gruebele
Effect of ATPase-Defective Mutant Doping on Functionality and Dynamics of Single Bacteriophage T4 DNA Packaging Motors
- DOI:
10.1016/j.bpj.2020.11.398 - 发表时间:
2021-02-12 - 期刊:
- 影响因子:
- 作者:
Suoang Lu;Vishal I. Kottadiel;Li Dai;Digvijay Singh;Taekjip Ha;Venigalla B. Rao;Yann R. Chemla - 通讯作者:
Yann R. Chemla
Probing the damage-sensing mechanism(s) of a DNA repair helicase
- DOI:
10.1016/j.bpj.2022.11.1003 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Alice Troitskaia;Paras Gaur;Masayoshi Honda;Maria Spies;Yann R. Chemla - 通讯作者:
Yann R. Chemla
Yann R. Chemla的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yann R. Chemla', 18)}}的其他基金
Mechanisms of DNA helicases and their regulation
DNA解旋酶的机制及其调控
- 批准号:
10330652 - 财政年份:2022
- 资助金额:
$ 37.15万 - 项目类别:
Mechanisms of regulation of DNA repair helicases
DNA 修复解旋酶的调控机制
- 批准号:
9751892 - 财政年份:2016
- 资助金额:
$ 37.15万 - 项目类别:
Mechanisms of regulation of DNA repair helicases
DNA 修复解旋酶的调控机制
- 批准号:
9158768 - 财政年份:2016
- 资助金额:
$ 37.15万 - 项目类别:
Mechanisms of regulation of DNA repair helicases
DNA 修复解旋酶的调控机制
- 批准号:
9324292 - 财政年份:2016
- 资助金额:
$ 37.15万 - 项目类别:
Combined ultrahigh-resolution optical tweezers and single-molecule fluorescence
超高分辨率光镊与单分子荧光相结合
- 批准号:
7943010 - 财政年份:2009
- 资助金额:
$ 37.15万 - 项目类别:
Mechanism of the bacteriophage phi29 DNA packaging motor
噬菌体phi29 DNA包装马达的机制
- 批准号:
6487851 - 财政年份:2002
- 资助金额:
$ 37.15万 - 项目类别:
Mechanism of the bacteriophage phi29 DNA packaging motor
噬菌体phi29 DNA包装马达的机制
- 批准号:
6756444 - 财政年份:2002
- 资助金额:
$ 37.15万 - 项目类别:
Mechanism of the bacteriophage phi29 DNA packaging motor
噬菌体phi29 DNA包装马达的机制
- 批准号:
6626248 - 财政年份:2002
- 资助金额:
$ 37.15万 - 项目类别:
相似国自然基金
变构转录因子SliX感知细胞内信号并调控黄单胞菌致病过程的生物化学机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
变构转录因子SliX感知细胞内信号并调控黄单胞菌致病过程的生物化学机制
- 批准号:32172369
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
脱氢酶产生ROS的生物化学机理及其在维持肿瘤细胞内ROS平衡的作用
- 批准号:81772947
- 批准年份:2017
- 资助金额:58.0 万元
- 项目类别:面上项目
O-GlcNAC糖基化修饰对冷暴露仔猪骨骼肌代谢的影响及其稳态重构机制
- 批准号:31772695
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
猪流行性腹泻病毒3C样蛋白酶(3CLPro)调控MAVS介导的抗病毒信号通路的分子机制
- 批准号:31772701
- 批准年份:2017
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
Molecular mechanisms of memory formation and tolerance in CRISPR-Cas systems
CRISPR-Cas系统中记忆形成和耐受的分子机制
- 批准号:
10570544 - 财政年份:2023
- 资助金额:
$ 37.15万 - 项目类别:
Mechanisms of DNA helicases and their regulation
DNA解旋酶的机制及其调控
- 批准号:
10330652 - 财政年份:2022
- 资助金额:
$ 37.15万 - 项目类别:
Rescue and repair of stalled ribosome damaged by ribosome-specific ribotoxins
被核糖体特异性核毒素损坏的停滞核糖体的拯救和修复
- 批准号:
10615180 - 财政年份:2022
- 资助金额:
$ 37.15万 - 项目类别:
Rescue and repair of stalled ribosome damaged by ribosome-specific ribotoxins
被核糖体特异性核毒素损坏的停滞核糖体的拯救和修复
- 批准号:
10467347 - 财政年份:2022
- 资助金额:
$ 37.15万 - 项目类别:
Virus Evolution Through Horizontal Gene Transfer
通过水平基因转移的病毒进化
- 批准号:
10157165 - 财政年份:2021
- 资助金额:
$ 37.15万 - 项目类别: