Microphysiological Systems to Study Hypoxic Cardiac Injury
研究缺氧性心脏损伤的微生理系统
基本信息
- 批准号:10591258
- 负责人:
- 金额:$ 11.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-09 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcademiaAcute myocardial infarctionAddressAffectArchitectureAreaAutophagocytosisBindingBioinformaticsBiological AssayBiomedical EngineeringBlood flowCalciumCaliforniaCardiacCardiac MyocytesCell physiologyCessation of lifeCharacteristicsCoenzymesCommunicationComplexCoronary arteryCoupledDataData SetDependenceDevelopmentEngineeringEnvironmentFluorescence MicroscopyFunctional disorderGoalsHeartHeart InjuriesHeterogeneityHumanHypoxiaImageIn VitroIncubatorsInjuryInvestigationIschemiaLaboratoriesLeadLos AngelesMeasurementMeasuresMediatingMediatorMembrane PotentialsMentorsMentorshipMetabolicMetabolismMethodsMicroRNAsMicrofluidic MicrochipsMicrofluidicsModelingMolecularMolecular AnalysisMonitorMotionMyocardial InfarctionMyocardial Reperfusion InjuryMyocardial StunningMyocardial dysfunctionMyocardial tissueMyocardiumOpticsOxygenParacrine CommunicationPathologic ProcessesPathway interactionsPediatric HospitalsPhasePhenotypePhysiologicalProcessProteomicsReactive Oxygen SpeciesRegulationReperfusion InjuryReperfusion TherapyResearchResearch PersonnelRoleSarcomeresSiteSystemTechnologyTherapeuticTherapeutic EffectTimeTissue ViabilityTissuesTractionTraction Force MicroscopyTrainingUniversitiesVascular blood supplyblood perfusioncoronary artery occlusionexosomeexperienceextracellularheart cellin vitro Modelin vivo Modelinduced pluripotent stem cell derived cardiomyocytesinjuredinnovationinsightintercellular communicationmedical schoolsmetabolic imagingmicrodevicemicrophysiology systemmitochondrial membranemulti-scale modelingmyocardial damagenoveloptical imagingorgan on a chipparacrinepharmacologicpreservationprogramsrelease of sequestered calcium ion into cytoplasmrepairedresponserestorationskillsspatiotemporaltool
项目摘要
Project Summary/Abstract
Following the onset of an acute myocardial infarction (MI) with coronary artery occlusion, the restricted
blood supply limits oxygenation of the myocardium, resulting in the formation of a steep oxygen (O2) gradient
from normoxic, viable tissue to hypoxic, damaged tissue. A site of regional dysfunction exists at the interface
between the normoxic and hypoxic tissue, known as the border zone. Reperfusion restores the flow of blood and
O2 to the tissue, but also induces ischemia reperfusion injury (IRI), a pathophysiology resulting in further tissue
damage. The pathological processes underlying these hypoxic cardiac injuries are not definitively established,
in part due to a lack of experimental tools to recapitulate the diverse spatiotemporal O2 gradients characteristic
of MI and IRI. The goal of this proposal is to engineer microphysiological systems with tight O2 control to
investigate the molecular pathways activated in O2 gradients, and the resulting effects on cardiomyocyte (CM)
function, to obtain a comprehensive view of the cardiac response to hypoxic injury. The aims outlined in this
proposal will build on the expertise of Dr. Rexius in controlling O2 levels using microfluidics and integrate Heart-
on-a-Chip technologies to advance the functional and mechanistic understanding of hypoxic cardiac injury. In
the mentored phase, Dr. Rexius will use engineering and pharmacological approaches to control paracrine
interactions in an MI border zone microdevice model and determine the role of paracrine-mediated hypoxic-
normoxic intercellular communication in defining the spatial metabolic heterogeneity across an O2 gradient (Aim
1). Proteomic and miRNA analysis will be used to identify and validate transfer of exosome cargo as a paracrine
mechanism altering CM metabolism. The existing O2 control framework will be utilized to engineer a
microphysiological system to model IRI and multiplex measurements of traction force, sarcomere shortening,
and calcium transients, and their dependence on O2 tension, to monitor dysfunction with live imaging (Aim 2). In
the independent phase, modified versions of these systems will examine the effect of O2 reperfusion rate on CM
function and the regulation of autophagy, a process by which cellular material is degraded and recycled (Aim 3).
The project and mentorship plan will allow Dr. Rexius to develop skills in (1) non-invasive optical
measurements of metabolic parameters, (2) bioinformatics analysis of exosome proteomic and miRNA datasets,
(3) traction force microscopy, and (4) communication, mentoring, and laboratory management to prepare to lead
an independent research program in academia. Dr. Rexius will be co-mentored by Dr. Megan McCain at the
University of Southern California (USC) and Dr. Ching-Ling (Ellen) Lien at the Keck School of Medicine of USC
and Children’s Hospital Los Angeles. Dr. Rexius has also enlisted Dr. Keyue Shen (USC) and Dr. Jennifer Van
Eyk (Cedars-Sinai) as advisors to support her scientific and professional development. Completion of the aims
will reveal novel insights into CM responses in heterogeneous O2 landscapes.
项目概要/摘要
伴随冠状动脉闭塞的急性心肌梗塞 (MI) 发作后,
血液供应限制了心肌的氧合,导致形成陡峭的氧 (O2) 梯度
从含氧量正常、有活力的组织到缺氧、受损的组织,界面处存在区域功能障碍。
正常氧组织和缺氧组织之间的边界区,称为再灌注恢复血液流动和。
O2 进入组织,但也会诱发缺血再灌注损伤 (IRI),这是一种导致组织进一步损伤的病理生理学
这些缺氧性心脏损伤的病理过程尚未明确确定。
部分原因是缺乏实验工具来概括不同的时空 O2 梯度特征
MI 和 IRI 的目标是设计具有严格 O2 控制的微生理系统。
研究 O2 梯度中激活的分子途径及其对心肌细胞 (CM) 的影响
功能,以全面了解心脏对缺氧损伤的反应。
该提案将建立在 Rexius 博士使用微流体控制 O2 水平并整合心脏-
片上技术可促进对缺氧心脏损伤的功能和机制的理解。
在指导阶段,Rexius 博士将使用工程和药理学方法来控制旁分泌
MI 边界区微装置模型中的相互作用,并确定旁分泌介导的缺氧的作用
含氧量正常的细胞间通讯定义 O2 梯度上的空间代谢异质性(目标
1). 蛋白质组学和 miRNA 分析将用于鉴定和验证外泌体货物作为旁分泌的转移。
改变 CM 代谢的机制将利用现有的 O2 控制框架来设计
微生理系统模拟 IRI 并多重测量牵引力、肌节缩短、
和钙瞬变及其对 O2 张力的依赖性,以通过实时成像监测功能障碍(目标 2)。
在独立阶段,这些系统的修改版本将检查 O2 再灌注率对 CM 的影响
自噬的功能和调节,自噬是细胞材料降解和回收的过程(目标 3)。
该项目和指导计划将使 Rexius 博士能够发展以下方面的技能:(1) 非侵入性光学
(2)外泌体蛋白质组和miRNA数据集的生物信息学分析,
(3) 牵引力显微镜,以及 (4) 沟通、指导和实验室管理,为领导做好准备
Rexius 博士将与 Megan McCain 博士共同指导学术界的一个独立研究项目。
南加州大学 (USC) 和南加州大学凯克医学院的 Ching-Ling (Ellen) Lien 博士
和洛杉矶儿童医院 Rexius 博士还招募了沉克悦博士(南加州大学)和 Jennifer Van 博士。
Eyk(Cedars-Sinai)担任顾问,支持她完成科学和专业发展目标。
将揭示异质 O2 景观中 CM 反应的新见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Megan L. Rexius其他文献
Megan L. Rexius的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
FTO介导的m6A修饰调控Treg细胞衰老在老年急性心肌梗死后心室重塑中的作用及机制研究
- 批准号:82300335
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
雅解毫命通过“肝-心轴”调控PI3K-Akt通路减轻急性心肌梗死的作用及机制研究
- 批准号:82360839
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
Trim28调控ALDH2翻译后修饰在急性心肌梗死中的作用及机制
- 批准号:
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:
ALOX5-5-HETE介导铁死亡在急性心肌梗死残余炎症的机制研究
- 批准号:82300373
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多重急性心肌梗死生物标志物现场快速检测的干式免疫闭合式双极电化学发光传感技术的研究
- 批准号:32371554
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Alternative Mechanisms of Monocyte Transendothelial Migration in Inflammation
炎症中单核细胞跨内皮迁移的替代机制
- 批准号:
10534741 - 财政年份:2019
- 资助金额:
$ 11.88万 - 项目类别:
Alternative Mechanisms of Monocyte Transendothelial Migration in Inflammation
炎症中单核细胞跨内皮迁移的替代机制
- 批准号:
9759026 - 财政年份:2019
- 资助金额:
$ 11.88万 - 项目类别:
Alternative Mechanisms of Monocyte Transendothelial Migration in Inflammation
炎症中单核细胞跨内皮迁移的替代机制
- 批准号:
10312793 - 财政年份:2019
- 资助金额:
$ 11.88万 - 项目类别:
Alternative Mechanisms of Monocyte Transendothelial Migration in Inflammation
炎症中单核细胞跨内皮迁移的替代机制
- 批准号:
10063427 - 财政年份:2019
- 资助金额:
$ 11.88万 - 项目类别: