Microphysiological Systems to Study Hypoxic Cardiac Injury
研究缺氧性心脏损伤的微生理系统
基本信息
- 批准号:10591258
- 负责人:
- 金额:$ 11.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-09 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcademiaAcute myocardial infarctionAddressAffectArchitectureAreaAutophagocytosisBindingBioinformaticsBiological AssayBiomedical EngineeringBlood flowCalciumCaliforniaCardiacCardiac MyocytesCell physiologyCessation of lifeCharacteristicsCoenzymesCommunicationComplexCoronary arteryCoupledDataData SetDependenceDevelopmentEngineeringEnvironmentFluorescence MicroscopyFunctional disorderGoalsHeartHeart InjuriesHeterogeneityHumanHypoxiaImageIn VitroIncubatorsInjuryInvestigationIschemiaLaboratoriesLeadLos AngelesMeasurementMeasuresMediatingMediatorMembrane PotentialsMentorsMentorshipMetabolicMetabolismMethodsMicroRNAsMicrofluidic MicrochipsMicrofluidicsModelingMolecularMolecular AnalysisMonitorMotionMyocardial InfarctionMyocardial Reperfusion InjuryMyocardial StunningMyocardial dysfunctionMyocardial tissueMyocardiumOpticsOxygenParacrine CommunicationPathologic ProcessesPathway interactionsPediatric HospitalsPhasePhenotypePhysiologicalProcessProteomicsReactive Oxygen SpeciesRegulationReperfusion InjuryReperfusion TherapyResearchResearch PersonnelRoleSarcomeresSiteSystemTechnologyTherapeuticTherapeutic EffectTimeTissue ViabilityTissuesTractionTraction Force MicroscopyTrainingUniversitiesVascular blood supplyblood perfusioncoronary artery occlusionexosomeexperienceextracellularheart cellin vitro Modelin vivo Modelinduced pluripotent stem cell derived cardiomyocytesinjuredinnovationinsightintercellular communicationmedical schoolsmetabolic imagingmicrodevicemicrophysiology systemmitochondrial membranemulti-scale modelingmyocardial damagenoveloptical imagingorgan on a chipparacrinepharmacologicpreservationprogramsrelease of sequestered calcium ion into cytoplasmrepairedresponserestorationskillsspatiotemporaltool
项目摘要
Project Summary/Abstract
Following the onset of an acute myocardial infarction (MI) with coronary artery occlusion, the restricted
blood supply limits oxygenation of the myocardium, resulting in the formation of a steep oxygen (O2) gradient
from normoxic, viable tissue to hypoxic, damaged tissue. A site of regional dysfunction exists at the interface
between the normoxic and hypoxic tissue, known as the border zone. Reperfusion restores the flow of blood and
O2 to the tissue, but also induces ischemia reperfusion injury (IRI), a pathophysiology resulting in further tissue
damage. The pathological processes underlying these hypoxic cardiac injuries are not definitively established,
in part due to a lack of experimental tools to recapitulate the diverse spatiotemporal O2 gradients characteristic
of MI and IRI. The goal of this proposal is to engineer microphysiological systems with tight O2 control to
investigate the molecular pathways activated in O2 gradients, and the resulting effects on cardiomyocyte (CM)
function, to obtain a comprehensive view of the cardiac response to hypoxic injury. The aims outlined in this
proposal will build on the expertise of Dr. Rexius in controlling O2 levels using microfluidics and integrate Heart-
on-a-Chip technologies to advance the functional and mechanistic understanding of hypoxic cardiac injury. In
the mentored phase, Dr. Rexius will use engineering and pharmacological approaches to control paracrine
interactions in an MI border zone microdevice model and determine the role of paracrine-mediated hypoxic-
normoxic intercellular communication in defining the spatial metabolic heterogeneity across an O2 gradient (Aim
1). Proteomic and miRNA analysis will be used to identify and validate transfer of exosome cargo as a paracrine
mechanism altering CM metabolism. The existing O2 control framework will be utilized to engineer a
microphysiological system to model IRI and multiplex measurements of traction force, sarcomere shortening,
and calcium transients, and their dependence on O2 tension, to monitor dysfunction with live imaging (Aim 2). In
the independent phase, modified versions of these systems will examine the effect of O2 reperfusion rate on CM
function and the regulation of autophagy, a process by which cellular material is degraded and recycled (Aim 3).
The project and mentorship plan will allow Dr. Rexius to develop skills in (1) non-invasive optical
measurements of metabolic parameters, (2) bioinformatics analysis of exosome proteomic and miRNA datasets,
(3) traction force microscopy, and (4) communication, mentoring, and laboratory management to prepare to lead
an independent research program in academia. Dr. Rexius will be co-mentored by Dr. Megan McCain at the
University of Southern California (USC) and Dr. Ching-Ling (Ellen) Lien at the Keck School of Medicine of USC
and Children’s Hospital Los Angeles. Dr. Rexius has also enlisted Dr. Keyue Shen (USC) and Dr. Jennifer Van
Eyk (Cedars-Sinai) as advisors to support her scientific and professional development. Completion of the aims
will reveal novel insights into CM responses in heterogeneous O2 landscapes.
项目摘要/摘要
急性心肌梗塞(MI)伴有冠状动脉闭塞后,受限制
血液供应限制心肌的氧合,导致形成钢氧(O2)梯度
从常规,可行的组织到缺氧,损坏的组织。界面上存在区域功能障碍的位点
在常氧组织和低氧组织之间,称为边界区。再灌注恢复血液的流动和
O2到组织,但也诱导缺血再灌注损伤(IRI),这是一种病理生理学,导致进一步的组织
损害。这些缺氧心脏损伤的基础病理过程并未确定确定,
部分原因是缺乏实验工具来概括潜水员时空o2梯度的特征
Mi和Iri。该建议的目的是设计具有紧密O2控制的微生物生理系统
研究在O2梯度中激活的分子途径,并对心肌细胞(CM)产生影响
功能,以获取对低氧损伤的心脏反应的全面视图。概述的目的
提案将以Rexius博士的专业知识为基础
片上的技术,以提高对低氧心脏损伤的功能和机械理解。在
Rexius博士将使用工程和药物方法来控制旁分泌
MI边框区微电位模型中的相互作用,并确定旁分泌介导的低氧的作用
定义O2梯度的空间代谢异质性时,细胞间通信(AIM)
1)。蛋白质组学和miRNA分析将用于识别和验证外泌体货物作为旁分泌的转移
改变CM代谢的机制。现有的O2控制框架将用于设计
微生物生理系统以建模IRI和牵引力的多个测量,肌节缩短,
和钙瞬变及其对O2张力的依赖性,以通过实时成像监测功能障碍(AIM 2)。在
这些系统的独立阶段修改版本将检查O2再灌注速率对CM的影响
功能和自噬的调节,这是一个降解和回收利用细胞材料的过程(AIM 3)。
该项目和心态计划将使Rexius博士能够在(1)非侵入性光学方面发展技能
代谢参数的测量,(2)外泌体蛋白质组学和miRNA数据集的生物信息学分析,
(3)牵引力显微镜以及(4)沟通,心理和实验室管理,以准备领导
学术界的独立研究计划。 Rexius博士将由Megan McCain博士在
南加州大学(USC)和Ching-Ling博士(Ellen)留置权
和儿童医院洛杉矶。 Rexius博士还邀请了Keyue Shen博士(USC)和Jennifer Van博士
EYK(Cedars-Sinai)作为支持她的科学和专业发展的顾问。目标完成
将揭示对异质O2景观中CM反应的新见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Megan L. Rexius其他文献
Megan L. Rexius的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
长链非编码RNA MIPRL在急性心肌梗塞中的作用及分子机制
- 批准号:81870275
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
Cdx2+胎盘干细胞移植治疗急性心肌梗塞的实验研究
- 批准号:81270281
- 批准年份:2012
- 资助金额:70.0 万元
- 项目类别:面上项目
LPA在急性心梗诱发心律失常中的作用及其电生理机制
- 批准号:81170163
- 批准年份:2011
- 资助金额:14.0 万元
- 项目类别:面上项目
心肌缺氧/再灌注与细胞移植多功能集成微流控芯片模型构建及应用
- 批准号:21175107
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Alternative Mechanisms of Monocyte Transendothelial Migration in Inflammation
炎症中单核细胞跨内皮迁移的替代机制
- 批准号:
10534741 - 财政年份:2019
- 资助金额:
$ 11.88万 - 项目类别:
Alternative Mechanisms of Monocyte Transendothelial Migration in Inflammation
炎症中单核细胞跨内皮迁移的替代机制
- 批准号:
9759026 - 财政年份:2019
- 资助金额:
$ 11.88万 - 项目类别:
Alternative Mechanisms of Monocyte Transendothelial Migration in Inflammation
炎症中单核细胞跨内皮迁移的替代机制
- 批准号:
10312793 - 财政年份:2019
- 资助金额:
$ 11.88万 - 项目类别:
Alternative Mechanisms of Monocyte Transendothelial Migration in Inflammation
炎症中单核细胞跨内皮迁移的替代机制
- 批准号:
10063427 - 财政年份:2019
- 资助金额:
$ 11.88万 - 项目类别: