Mapping p53 dynamics to cell-fate outcomes in reprogramming and oncogenesis
将 p53 动态映射到重编程和肿瘤发生中的细胞命运结果
基本信息
- 批准号:10744532
- 负责人:
- 金额:$ 4.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-11 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedAttentionBackBehaviorBindingBypassCancer ModelCancerousCell Differentiation processCell FractionCell ReprogrammingCell SeparationCellsDNA Binding DomainDiagnosisDiseaseEarly DiagnosisEctodermEndodermEngineeringEpigenetic ProcessEpithelial CellsEpitheliumEventFibroblastsFrequenciesGenerationsGenesGenetic TranscriptionGenomicsHumanHuman DevelopmentImmuneInvestigationLeadLinkMalignant NeoplasmsMalignant neoplasm of ovaryMammalian OviductsMammary Gland ParenchymaMapsMediatingMesodermModelingMolecularMotor NeuronsMusMutateMutationNeoplasm MetastasisNeuronsOncogenesOncogenicOrganismOrganoidsOutcomePatient-Focused OutcomesPhasePhenotypePluripotent Stem CellsPoint MutationPostdoctoral FellowProcessProliferatingProteinsRegulationReporterReportingResearchRoleSamplingSkinSomatic CellStainsSynthetic GenesSystemTP53 geneTherapeuticTissuesTumor Suppressor ProteinsWorkcancer initiationcarcinogenesiscell typedesigneffective therapyenhancing factorgain of functionimprovedinduced pluripotent stem cellmutantoverexpressionpreventprogramssensorsmall hairpin RNAstem cell differentiationstem cell fatestem cell fate specificationstem cellssuccesstargeted treatmentthree-dimensional modelingtranscription factortrendtumortumor initiationtumor progressiontumorigenesis
项目摘要
Project Summary
Cell fates are decided as an organism develops. In human development, pluripotent stem cells
differentiate into the three layers of ectoderm, mesoderm, and endoderm. These classes of tissue further
differentiate into specific cell types with specific functions including neurons, immune cells, and skin cells. These
identities are stable; once a cell differentiates into its final state, it will not revert back to a stem cell state, nor will
it transform into another cell type. A skin cell will not spontaneously become a neuron, even if the neuron is
damaged. However, Takahashi and Yamanaka demonstrated that cells have the potential to revert back to a
stem cell fate when they reprogrammed mouse fibroblasts into induced pluripotent stem cells (iPSCs) by forced
overexpression of stem cell-specifying transcription factors. In 2010, Vierbuchen and colleagues demonstrated
that fibroblasts could be reprogrammed directly to neurons using neuron-specific transcription factors, bypassing
the need for an iPSC-intermediate. However, reprogramming efficiencies in each of these systems was low; very
few cells are actually capable of changing their cellular identity.
In 2019, Babos and Galloway greatly improve reprogramming efficiencies in direct motor neuron
reprogramming, demonstrating improved reprogramming yields 100 times greater than the original process.
They drew upon factors that enhanced another cell fate transition: cancer. Genes that promote a healthy cell’s
transition to cancer also improved the ability of a cell to change its cell type. Thus, reprogramming can serve as
a model of cancer initiation. By understanding the molecular mechanisms by which these oncogenes promote
reprogramming, we can understand how oncogenes evade cellular barriers to cancer and establish tumors.
In the F99-phase of the proposed research, I will investigate the role of the tumor suppressor protein p53 in
oncogene-mediated reprogramming. p53 is the most frequently mutated gene in cancer. Rather than p53
expression being lost in cancer, it is most often mutated to create a protein unable to perform its designated
functions and accumulates to abnormally high levels. As a synthetic biologist, I will design synthetic gene circuits
that track and report p53 levels during reprogramming. I will isolate cells that accumulate p53 and investigate
their ability to reprogram.
In the K00-phase of the proposed research, I will extend my investigations of p53 to three-dimensional
models of ovarian cancer. Ovarian cancer is often diagnosed at late stages, after the cancer has metastasized,
leading to poor patient outcomes. 3D models of tumor initiation can shed light on the early stages of ovarian
cancer and enable clinicians to catch the cancer early, when the disease is most easily treated. By inducing
cancer initiation in 3D models of ovarian cancer and tracking cancer progression using p53-sensors, I will identify
the drivers of tumor establishment and factors associated with early-stage disease.
项目摘要
细胞命运被确定为生物体的发展。在人类发育中,多能干细胞
分化为外胚层,中胚层和内胚层的三层。这些组织进一步
通过特定功能区分特定的细胞类型,包括神经元,免疫细胞和皮肤细胞。这些
身份稳定;一旦细胞区分到最终状态,它将不会恢复到干细胞状态,也不会
它转变为另一种单元格类型。即使神经元是,皮肤细胞也不会成为神经元
损坏的。但是,高桥和山内卡证明了细胞有可能恢复到
干细胞的命运将小鼠成纤维细胞重编程为诱导多能干细胞(IPSC)时
干细胞特异性转录因子的过表达。 2010年,Vierbuchen及其同事证明了
可以使用神经特异性转录因子将成纤维细胞直接重编程为神经元
需要IPSC中级。但是,每个系统中的每个系统的重编程效率都很低。非常
实际上,很少有细胞能够改变其细胞身份。
在2019年,Babos和Galloway极大地提高了直接运动神经元的重编程效率
重新编程,证明重新编程的改进,比原始过程大100倍。
他们借鉴了增强了另一种细胞命运转变的因素:癌症。促进健康细胞的基因
过渡到癌症还提高了细胞改变其细胞类型的能力。那就是重新编程可以作为
癌症开始的模型。通过了解这些癌基因促进的分子机制
重新编程,我们可以理解Oncogenes如何逃避癌症的细胞障碍并建立肿瘤。
在拟议的研究的F99期间,我将研究肿瘤抑制蛋白p53在
癌基因介导的重编程。 p53是癌症中最常见的突变基因。而不是p53
表达在癌症中流失,通常会突变以创建无法执行其指定的蛋白质
功能并累积到绝对高水平。作为合成生物学家,我将设计合成基因电路
在重新编程过程中,该跟踪和报告P53水平。我将分离积累p53并研究的细胞
他们重新编程的能力。
在拟议的研究的K00期间,我将把p53的研究扩展到三维
卵巢癌的模型。癌症转移后,经常在晚期诊断出卵巢癌,
导致患者的结果差。肿瘤起始的3D模型可以揭示卵巢的早期阶段
当疾病最容易治疗时,癌症并使临床医生能够尽早感染癌症。由诱导
在卵巢癌的3D模型中的癌症开始,并使用p53传感器跟踪癌症的进展,我将确定
肿瘤的驱动因素和与早期疾病相关的因素。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Matthew Beitz其他文献
Adam Matthew Beitz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Applying Computational Phenotypes To Assess Mental Health Disorders Among Transgender Patients in the United States
应用计算表型评估美国跨性别患者的心理健康障碍
- 批准号:
10604723 - 财政年份:2023
- 资助金额:
$ 4.92万 - 项目类别:
Microenvironmental characterization and manipulation to prevent secondary caries
预防继发龋的微环境特征和操作
- 批准号:
10814030 - 财政年份:2023
- 资助金额:
$ 4.92万 - 项目类别:
Crossroads: Using decision making strategies to develop high impact content for training in rigor and transparency.
十字路口:使用决策策略来开发高影响力的内容,以进行严格和透明的培训。
- 批准号:
10722510 - 财政年份:2023
- 资助金额:
$ 4.92万 - 项目类别:
Paid Sick Leave Mandates and Mental Healthcare Service Use
带薪病假规定和心理保健服务的使用
- 批准号:
10635492 - 财政年份:2023
- 资助金额:
$ 4.92万 - 项目类别:
Annual wellness visit policy: Impact on disparities in early dementia diagnosis and quality of healthcare for Medicare beneficiaries with Alzheimer's Disease and Its Related Dementias
年度健康就诊政策:对患有阿尔茨海默病及其相关痴呆症的医疗保险受益人的早期痴呆诊断和医疗质量差异的影响
- 批准号:
10729272 - 财政年份:2023
- 资助金额:
$ 4.92万 - 项目类别: