Biocarpet: The Next Generation Endovascular Device for Peripheral Arterial Disease
Biocarpet:治疗外周动脉疾病的下一代血管内装置
基本信息
- 批准号:10744597
- 负责人:
- 金额:$ 39.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAmericanAmputationAnatomyAngioplastyArteriesAwardBalloon AngioplastyBlood PlateletsBlood VesselsBody TemperatureBusinessesBypassCathetersClinicalClinical TreatmentComplexDevicesDiseaseEquipment MalfunctionExerciseFailureFamily suidaeFractureFundingFutureGoalsGrantHistologyHuman ResourcesImageImmune responseIn SituIn VitroInterventionInvestmentsJointsKneeLeftLegal patentLesionLower ExtremityMarketingMechanical StressMechanicsModelingMorbidity - disease rateMotionOperative Surgical ProceduresOutcomePatientsPerformancePeripheralPeripheral arterial diseasePharmaceutical PreparationsPhaseProteinsRadialResearchRiskShapesStentsStressStructure of popliteal arterySymptomsTechnologyTemperatureTimeTranslatingTreatyadvanced diseasearterial tortuosityclinical translationcommercializationcritical limb Ischemiadesignfemoral arteryimprovedin vivonext generationnovelprototyperesponserestenosisscaffoldsmoking cessationstandard carestress statetechnology platformtimelinetwo-dimensionalvascular injury
项目摘要
Project Summary
It is estimated that over 10 million Americans have peripheral arterial disease (PAD). Left untreated
PAD will lead to critical limb ischemia and eventual amputation. PAD symptoms often progress requiring one of
the following interventions: balloon angioplasty, stent placement, or vascular bypass. Balloon angioplasty and
drug eluting stents radially expand stenosed arteries -- a mechanical insult that damages the vessel leading to
restenosis and device failure. This failure mechanism leads to a two-year patency rate of 50% and 60% for
angioplasty and drug eluting balloons, respectively. 80 to 90% of patients with advanced PAD present with
disease in the femoral and popliteal arteries – where tortuosity and complex joint motion is common. These
complex bending forces exacerbate treatment challenges and often lead to stent fracture and increased rates
of restenosis. The gold standard treatment of PAD is surgical bypass, which itself displays a primary 2 year
patency rate of up to 67% for anatomically complex lesions. The unacceptable failure rates of all PAD
treatments clearly demonstrate the critical need for a more durable and successful treatment of PAD.
Our team has developed the Biocarpet – a fully biodegradable electrospun sheet that takes the shape
of the patient’s vascular anatomy following deployment. Our approach not only imposes significantly reduces
vascular wall stress during deployment, but also allows the Biocarpet’s zero stress state to be that of the host
artery – which is often tortuous or anatomically complex. This is hypothesized to further reduce vascular injury
in response to intraluminal pulsation and joint flexion – a common occurrence in the stenotic vessels of the
lower limb peripheral vasculature.
The overall goal of this Catalyze proposal is to finalize the Biocarpet design and prototype, establish
its deliverability and improved performance in-vivo, and make significant progress toward the clinical
translation of our technology. This goal will be met by completing the following objectives. The R61 phase of
this proposal has three Objectives: R61.1: Finalize the Biocarpet design, fabricate a device prototype, and
quantify its in-vitro deliverability and performance; R61.2: Establish the in-vivo deliverability of our device into
the bending joint of an atherosclerotic pig; R61.3: Generate a Regulatory Path document that details the
specific milestones that are required prior to a future FDA submission. The R33 phase of this proposal has two
objectives: R33.1: Demonstrate the improved in-vivo performance of our device compared to a gold standard
endovascular stent; R33.2: Generate a formal Business Model document detailing timeline to market, required
future investment, market analysis, and financial risk profile. Funding of this Catalyze award further integrate
our research team with the procured Accelerator Partners (including both regulatory and business expertise) to
accelerate our team’s goal of clinical translating this novel platform technology.
项目概要
据估计,超过 1000 万美国人患有外周动脉疾病 (PAD),但未得到治疗。
PAD 会导致严重的肢体缺血,最终 PAD 症状通常会进展,需要其中一种。
以下干预措施:球囊血管成形术、支架置入术或血管搭桥术。
药物洗脱支架径向扩张狭窄的动脉——一种机械损伤,会损害血管,导致
这种失效机制导致两年通畅率分别为 50% 和 60%。
80% 至 90% 的晚期 PAD 患者分别接受血管成形术和药物洗脱球囊治疗。
股动脉和腘动脉疾病——弯曲和复杂的关节运动很常见。
复杂的弯曲力加剧了治疗挑战,常常导致支架断裂和发生率增加
PAD 的金标准治疗是外科搭桥手术,其本身显示主要 2 年。
对于解剖结构复杂的病变,通畅率高达 67% 所有 PAD 的失败率都令人无法接受。
治疗清楚地表明迫切需要更持久和成功的 PAD 治疗。
我们的团队开发了 Biocarpet——一种完全可生物降解的电纺片材,其形状
我们的方法不仅显着减少了部署后患者的血管解剖结构。
部署期间的血管壁应力,但也允许生物地毯的零应力状态为宿主的零应力状态
动脉——通常是曲折的或解剖结构复杂的,这是为了进一步减少血管损伤而开发的。
响应腔内搏动和关节屈曲——这在狭窄血管中很常见
下肢周围血管系统。
该 Catalyze 提案的总体目标是最终确定生物地毯的设计和原型,建立
其体内递送能力和性能得到改善,并在临床上取得重大进展
我们的技术的转化将通过完成以下 R61 阶段的目标来实现。
该提案有三个目标: R61.1:最终确定生物地毯设计,制造设备原型,以及
量化其体外传递性和性能;R61.2:将我们的设备的体内传递性确定为
动脉粥样硬化猪的弯曲关节;R61.3:生成详细说明的监管路径文件
该提案的 R33 阶段在未来向 FDA 提交之前所需的具体里程碑有两个。
目标:R33.1:展示我们的设备与黄金标准相比改进的体内性能
R33.2:生成正式的商业模式文件,详细说明上市时间(需要)
该 Catalyze 奖项的未来投资、市场分析和财务风险状况进一步整合。
我们的研究团队与采购的加速器合作伙伴(包括监管和业务专业知识)
加速我们团队实现临床转化这一新颖平台技术的目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Pieter Vande Geest其他文献
Jonathan Pieter Vande Geest的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Pieter Vande Geest', 18)}}的其他基金
Preclinical Assessment of a Compliance Matched Biopolymer Vascular Graft
顺应性匹配的生物聚合物血管移植物的临床前评估
- 批准号:
10366911 - 财政年份:2021
- 资助金额:
$ 39.75万 - 项目类别:
Preclinical Assessment of a Compliance Matched Biopolymer Vascular Graft
顺应性匹配的生物聚合物血管移植物的临床前评估
- 批准号:
10540762 - 财政年份:2021
- 资助金额:
$ 39.75万 - 项目类别:
Preclinical Assessment of a Compliance Matched Biopolymer Vascular Graft
顺应性匹配的生物聚合物血管移植物的临床前评估
- 批准号:
10731964 - 财政年份:2021
- 资助金额:
$ 39.75万 - 项目类别:
Extracelluar Matrix Organization and Biomechanics of the Lamina Cribrosa and Peripapillary Sclera in Populations at High Risk for Primary Open Angle Glaucoma
原发性开角型青光眼高危人群筛板和视乳头周围巩膜的细胞外基质组织和生物力学
- 批准号:
9293031 - 财政年份:2016
- 资助金额:
$ 39.75万 - 项目类别:
Development of a Microstructurally Inspired and Compliance Matched Tissue Enginee
开发受微观结构启发且顺应性匹配的组织工程
- 批准号:
8444206 - 财政年份:2013
- 资助金额:
$ 39.75万 - 项目类别:
Development of a Microstructurally Inspired and Compliance Matched Tissue Enginee
开发受微观结构启发且顺应性匹配的组织工程
- 批准号:
8603278 - 财政年份:2013
- 资助金额:
$ 39.75万 - 项目类别:
Extracelluar Matrix Organization and Biomechanics of the Lamina Cribrosa and Peri
筛板和周周的细胞外基质组织和生物力学
- 批准号:
8188325 - 财政年份:2011
- 资助金额:
$ 39.75万 - 项目类别:
Extracelluar Matrix Organization and Biomechanics of the Lamina Cribrosa and Peri
筛板和周周的细胞外基质组织和生物力学
- 批准号:
8703108 - 财政年份:2011
- 资助金额:
$ 39.75万 - 项目类别:
Extracelluar Matrix Organization and Biomechanics of the Lamina Cribrosa and Peri
筛板和周周的细胞外基质组织和生物力学
- 批准号:
8304189 - 财政年份:2011
- 资助金额:
$ 39.75万 - 项目类别:
Extracelluar Matrix Organization and Biomechanics of the Lamina Cribrosa and Peri
筛板和周周的细胞外基质组织和生物力学
- 批准号:
8509699 - 财政年份:2011
- 资助金额:
$ 39.75万 - 项目类别:
相似海外基金
Ultrasound-guided Ultra-steerable Histotripsy Array System for Non-invasive treatment of Soft Tissue Sarcoma
超声引导超可控组织解剖阵列系统用于软组织肉瘤的无创治疗
- 批准号:
10649994 - 财政年份:2023
- 资助金额:
$ 39.75万 - 项目类别:
A novel electric current-based treatment system for chronic wound biofilm infections
一种新型的基于电流的慢性伤口生物膜感染治疗系统
- 批准号:
10720191 - 财政年份:2023
- 资助金额:
$ 39.75万 - 项目类别:
Sensory Augmentation, Restoration, and Modulation Using a Spinal Neuroprosthesis
使用脊柱神经假体进行感觉增强、恢复和调节
- 批准号:
10687329 - 财政年份:2023
- 资助金额:
$ 39.75万 - 项目类别:
Strain-Programmed Bioadhesive Patch for Enhanced Diabetic Wound Healing
用于增强糖尿病伤口愈合的应变程序生物粘附贴片
- 批准号:
10818916 - 财政年份:2023
- 资助金额:
$ 39.75万 - 项目类别: