Fibroadipogenic progenitor cells as drivers of angiogenesis during muscle regeneration
纤维脂肪祖细胞作为肌肉再生过程中血管生成的驱动因素
基本信息
- 批准号:10741438
- 负责人:
- 金额:$ 42.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-19 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AblationAddressAffectAngiogenic FactorAutomobile DrivingBiocompatible MaterialsBiologyBiopsyBlood VesselsCell ProliferationCellsCellular biologyClinicalComplementDataDevelopmentDisabled PersonsEmerging TechnologiesEmotionalEndothelial CellsEventExcisionFamilyFibroblastsFinancial HardshipGoalsGrowthHistologicHumanHydrogelsImageImplantIndividualInfiltrationInjuryIntegrin alphaVbeta3IntegrinsInterventionInvadedInvestmentsIsometric ContractionKnock-outLaboratoriesLimb structureLoxP-flanked alleleMeasuresMediatingMethodsMicrocirculationModelingMolecularMusMuscleMuscle CellsMuscle functionMuscle satellite cellMuscular AtrophyNational Institute of Child Health and Human DevelopmentNatural regenerationOutcomePathway interactionsPerfusionPlatelet-Derived Growth Factor alpha ReceptorProcessProteomicsPunch BiopsyRecombinantsRecoveryResearch Project GrantsRoleSignal TransductionSignaling MoleculeSignaling ProteinSiteSkeletal MuscleSystemTestingTherapeutic InterventionThinnessTissue EngineeringTissuesTranslatingTraumatic injuryangiogenesiscell typedisabilityengineering designexperimental studyhealinghigh rewardhigh riskimprovedintravital microscopymorphogensmuscle formmuscle regenerationmyogenesisnovelperiostinprecursor cellpreventreceptorresponsesatellite cellstem cellssuccesstherapy designtissue regenerationvolumetric muscle losswound
项目摘要
ABSTRACT
Skeletal muscle comprises nearly half of body mass and is subject to traumatic injuries, particularly of the
extremities. Damaged muscle mass and function must be restored promptly to minimize physical distortion and
prevent long-term disabilities. Furthermore, poor outcomes impose significant emotional and financial burdens
on affected individuals and their families. An aspirational goal of the NICHD is to advance the ability to regenerate
human limbs by using emerging technologies to activate the body’s own growth pathways and processes. Under
most circumstances damaged muscle is efficiently regenerated through a coordinated multicellular response
involving muscle stem cells (satellite cells, SCs), endothelial cells (ECs), and fibroblasts or fibroadipogenic
precursor cells (FAPs) as well as other resident and infiltrating cell types. However, after the loss of tissue over
a critical threshold (volumetric muscle loss, VML), tissue regeneration does not occur and neither mass nor
function are regained. The molecular and cellular mechanisms underlying the distinction between subthreshold,
regenerating wounds vs. nonregenerating VML are not yet sufficiently understood, posing a critical roadblock to
development of translational interventions. A novel punch biopsy model of injury and regeneration developed in
the PI’s laboratory using the mouse gluteus maximus muscle highlights the sequential activity of FAPs, ECs, and
SCs in successful muscle regeneration. A key observation is that if local FAPs are removed, both angiogenesis
and myogenesis fail to occur, making the subthreshold injury instead resemble VML. Whether FAPs effect this
relationship by direct actions on ECs, myogenic cells, or both is unknown. Therefore, this research project
proposes to: 1) confirm the requirement for FAPs in permitting healing of a subcritical VML injury; 2) test the
ability of a candidate molecule, periostin, to rescue microvascular and myofiber regeneration in wounds lacking
FAPs; 3) determine whether periostin signals directly to ECs, myogenic cells, or both; and 4) perform an unbiased
proteomic screen for additional signaling molecules either secreted directly by FAPs or induced in ECs or
myogenic cells by FAPs that may promote the regeneration of intact muscle. These experiments will leverage
the team's collective expertise in microvascular imaging, muscle regeneration, FAPs biology, and biomaterials
to identify, characterize, and functionally test key cellular and molecular factors differentiating between muscle
injuries which heal successfully and those which cannot. If successful, this research project will identify
molecules and methods which have the potential to be translated into therapies designed to improve clinical
outcomes for disabled individuals, thereby addressing a key unmet need in both basic and applied muscle
biology.
抽象的
骨骼肌占体重的近一半,容易遭受外伤,尤其是骨骼肌
受损的肌肉质量和功能必须立即恢复,以尽量减少身体扭曲和损伤。
此外,不良后果会造成严重的情感和经济负担。
NICHD 的一个理想目标是提高受影响个人及其家庭的再生能力。
通过使用新兴技术来激活人体自身的生长途径和过程,从而增强人体四肢的功能。
大多数情况下,受损的肌肉可以通过协调的多细胞反应有效地再生
肌肉干细胞(卫星细胞,SC)、内皮细胞(EC)和成纤维细胞或纤维脂肪形成细胞
然而,在组织丢失后,前体细胞(FAP)以及其他驻留细胞和浸润细胞类型。
达到临界阈值(体积肌肉损失,VML)时,不会发生组织再生,并且质量和质量都不会发生
功能被恢复。阈下之间的区别背后的分子和细胞机制。
再生伤口与非再生 VML 尚未得到充分了解,这构成了关键障碍
开发了一种新型的损伤和再生穿刺活检模型。
PI 的实验室使用小鼠臀大肌强调了 FAP、EC 和
SC 在成功的肌肉再生中的一个关键观察是,如果局部 FAP 被去除,血管生成就会发生。
肌生成失败,使得阈下损伤类似于 VML 是否会影响 FAP。
对 EC、生肌细胞或两者的直接作用之间的关系尚不清楚。
建议:1) 确认 FAP 允许亚临界 VML 损伤愈合的要求;2) 测试
候选分子骨膜素在缺乏微血管和肌纤维再生的伤口中挽救微血管和肌纤维再生的能力
FAP;3) 确定骨膜素是否直接向 EC、肌原细胞或两者发出信号,4) 执行公正的操作;
蛋白质组学筛选其他信号分子,这些信号分子由 FAP 直接分泌或在 EC 中诱导,或
FAP 的生肌细胞可能会促进完整肌肉的再生,这些实验将利用这些实验。
该团队在微血管成像、肌肉再生、FAP 生物学和生物材料方面的集体专业知识
识别、表征和功能测试区分肌肉的关键细胞和分子因素
如果成功,该研究项目将识别成功治愈的伤害和无法治愈的伤害。
有潜力转化为旨在改善临床的疗法的分子和方法
为残疾人士带来成果,从而解决基础肌肉和应用肌肉方面未满足的关键需求
生物学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEVEN S SEGAL其他文献
STEVEN S SEGAL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEVEN S SEGAL', 18)}}的其他基金
Frontiers in Microcirculation: Control Processes and Clinical Applications
微循环前沿:控制过程和临床应用
- 批准号:
7749829 - 财政年份:2009
- 资助金额:
$ 42.09万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Isoform- and Sex-Specific Functions of CGRP in Gastrointestinal Motility
CGRP 在胃肠动力中的亚型和性别特异性功能
- 批准号:
10635765 - 财政年份:2023
- 资助金额:
$ 42.09万 - 项目类别:
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 42.09万 - 项目类别:
Soft robotic sensor arrays for fast and efficient mapping of cardiac arrhythmias.
软机器人传感器阵列可快速有效地绘制心律失常图。
- 批准号:
10760164 - 财政年份:2023
- 资助金额:
$ 42.09万 - 项目类别:
Hypothalamic Sleep-Wake Neuron Defects in Alzheimer’s disease
阿尔茨海默病中的下丘脑睡眠-觉醒神经元缺陷
- 批准号:
10770001 - 财政年份:2023
- 资助金额:
$ 42.09万 - 项目类别:
Genetic Dissection of Stress Responses in Shwachman-Diamond Syndrome
什瓦赫曼-戴蒙德综合征应激反应的基因剖析
- 批准号:
10594366 - 财政年份:2023
- 资助金额:
$ 42.09万 - 项目类别: