Deciphering the Molecular Assembly Mechanism of Giant DNA Viruses
破译巨型DNA病毒的分子组装机制
基本信息
- 批准号:10621855
- 负责人:
- 金额:$ 34.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAlgorithmic SoftwareArchitectureBindingBiologicalBiological AssayBiophysicsCapsidCapsid ProteinsCellsChemistryCognitiveComputer AnalysisCryoelectron MicroscopyDNA VirusesDiseaseDockingElectronsEquationEvolutionFiberFoundationsFutureGenerationsHumanImageImage AnalysisIndividualLaboratoriesLipidsMapsMathematical Model SimulationMathematicsMethodsMinorModelingMolecularNobel PrizePathway interactionsPatternPhasePlayPneumoniaPositioning AttributeProcessProteinsPublishingRegulationResearchResolutionRoleStructureTechniquesTechnologyThickTrainingViralViral ProteinsVirionVirusVirus AssemblyVirus DiseasesVirus-like particleVisualizationVisualization softwarebiophysical analysisdetectorexperienceexperimental studyfrontierhigh resolution imaginghuman diseasehuman pathogenimage reconstructionimprovedinsightmarinemathematical analysismolecular assembly/self assemblymolecular dynamicsmultimodalitynanonew therapeutic targetnovelpathogenic viruspreventprotein protein interactionrational designreconstructionself assemblysimulationstructural biologytherapeutic developmenttool
项目摘要
Project Summary/Abstract
Over the last two decades, many giant DNA viruses have been discovered, some of which are bigger than a
small cell. How these giant viruses assemble their virion shell from thousands of simple protein building blocks
so precisely is a mystery. However, the sheer size of these viruses poses a significant challenge to currently
available techniques. This project will tackle this challenge by using a marine giant virus Cafeteria
roenbergensis virus (CroV) as a model to decipher the assembly mechanism of giant viruses, and as an
opportunity to develop technology to push the resolution limit of these gigantic structures to the atomic level.
During the last five years, cryo-electron microscopy (cryo-EM) has become an increasingly powerful tool to
study the structures of biological molecules at atomic resolution, earning its developers the 2017 Nobel Prize in
Chemistry. We will collect higher quality images using state-of-the-art cryo-EM equipped with latest new
hardware, such as energy filters, direct electron detectors and phase plates. Using these images together with
new software algorithms, we will determine the structure of giant CroV to high resolution by image analyses
and reconstruction. Structures of individual CroV proteins will also be solved to atomic resolution by cryo-EM
using various methods and docked into the cryo-EM reconstructed maps. The resultant pseudo-atomic
structure will allow characterization of the ultrastructural features and architecture of CroV, building the
essential foundation to unravel the assembly of giant viruses. The structure information will be combined with
classic biophysical, molecular dynamic simulation, mathematical modeling, and computational analyses to
evaluate the novel assembly model of giant viruses. In the new assembly model, the protein shells of giant
viruses are assembled continuously from the 5-fold vertices in an interesting spiral way instead of assembled
from patches in a step-wise fashion previously assumed. Giant virus protein shell is assembled from protein
building block similar to other viruses, including many human pathogens. Some giant viruses have been
associated with human diseases such as pneumonia and cognitive functional change. Understanding these
principles governing the assembly of giant viruses will improve the development of therapeutic agents to inhibit
virus assembly, thus providing a new avenue for preventing and treating viral diseases in general. Elucidation
of the molecular interactions that drive assembly of these giant viruses will also shed light on how to control
protein-protein interactions effectively, facilitating the rational design of virus-like nanoparticles with a wide size
range for biomedical and other nano-applications. Since some giant viruses are bigger than a small cell,
techniques and methods developed in this project will push the limits of structural biology and provide new and
useful tools to study even larger supramolecular assemblies and eventually the whole cell in the future.
项目摘要/摘要
在过去的二十年中,已经发现了许多巨型DNA病毒,其中一些比一个大于
小单元。这些巨型病毒如何从数千个简单蛋白质构建块中组装出其病毒座壳
恰恰是一个谜。但是,这些病毒的巨大规模对当前构成了重大挑战
可用技术。该项目将通过使用海洋巨型病毒自助餐厅来应对这一挑战
Roenbergensis病毒(CROV)是破译巨型病毒的装配机理的模型,作为一种模型
开发技术将这些巨大结构的分辨率限制推向原子水平的机会。
在过去的五年中,冷冻电子显微镜(Cryo-EM)已成为越来越强大的工具
研究原子分辨率生物分子的结构,赢得了其开发商2017年诺贝尔奖
化学。我们将使用配备最新新的新型冷冻EM收集更高质量的图像
硬件,例如能量过滤器,直接电子检测器和相板。将这些图像与
新的软件算法,我们将通过图像分析确定巨型CROV到高分辨率的结构
和重建。单个CROV蛋白的结构也将通过冷冻EM求解为原子分辨率
使用各种方法,并将其停靠到冷冻EM重建图中。由此产生的伪原子
结构将允许表征Crov的超微结构特征和建筑,建造
揭开巨型病毒组装的基础。结构信息将与
经典的生物物理,分子动态模拟,数学建模和计算分析
评估巨型病毒的新型装配模型。在新的组装模型中,巨型蛋白质壳
病毒以有趣的螺旋方式从5倍的顶点连续组装而不是组装
以先前假定的逐步方式从补丁程序中。巨型病毒蛋白壳是由蛋白质组装的
类似于其他病毒的基础,包括许多人类病原体。一些巨型病毒已经
与肺炎和认知功能变化等人类疾病有关。了解这些
管理巨型病毒组装的原则将改善治疗剂的发展以抑制
病毒组装,从而提供了一种新的途径,以预防和治疗病毒疾病。阐明
驱动这些巨型病毒组装的分子相互作用也将阐明如何控制
有效的蛋白质蛋白质相互作用,促进了具有广泛尺寸的病毒样纳米颗粒的合理设计
生物医学和其他纳米应用的范围。由于某些巨型病毒比小细胞大
该项目中开发的技术和方法将推动结构生物学的限制,并提供新的和
有用的工具可以在将来研究更大的超分子组件,最终是整个细胞。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kratosvirus quantuckense: the history and novelty of an algal bloom disrupting virus and a model for giant virus research.
- DOI:10.3389/fmicb.2023.1284617
- 发表时间:2023
- 期刊:
- 影响因子:5.2
- 作者:
- 通讯作者:
The impact of sulfatide loss on the progress of Alzheimer's disease.
硫苷脂丢失对阿尔茨海默病进展的影响。
- DOI:10.1002/ctd2.236
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Finkielstein,CarlaV;Capelluto,DanielGS
- 通讯作者:Capelluto,DanielGS
Phafins Are More Than Phosphoinositide-Binding Proteins.
- DOI:10.3390/ijms24098096
- 发表时间:2023-04-30
- 期刊:
- 影响因子:5.6
- 作者:Tang, Tuoxian;Hasan, Mahmudul;Capelluto, Daniel G. S.
- 通讯作者:Capelluto, Daniel G. S.
The Role of Tape Measure Protein in Nucleocytoplasmic Large DNA Virus Capsid Assembly.
卷尺蛋白在核胞质大 DNA 病毒衣壳组装中的作用。
- DOI:10.1089/vim.2020.0038
- 发表时间:2021
- 期刊:
- 影响因子:2.2
- 作者:Xian,Yuejiao;Avila,Ricardo;Pant,Anil;Yang,Zhilong;Xiao,Chuan
- 通讯作者:Xiao,Chuan
Current capsid assembly models of icosahedral nucleocytoviricota viruses.
- DOI:10.1016/bs.aivir.2020.09.006
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Xian Y;Xiao C
- 通讯作者:Xiao C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chuan Xiao其他文献
Chuan Xiao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chuan Xiao', 18)}}的其他基金
Deciphering the Molecular Assembly Mechanism of Giant DNA Viruses
破译巨型DNA病毒的分子组装机制
- 批准号:
10390036 - 财政年份:2019
- 资助金额:
$ 34.24万 - 项目类别:
Deciphering the Molecular Assembly Mechanism of Giant DNA Viruses
破译巨型DNA病毒的分子组装机制
- 批准号:
10392914 - 财政年份:2019
- 资助金额:
$ 34.24万 - 项目类别:
Dissecting the Molecular Regulatory Mechanism of Mammalian Circadian Core Compone
解析哺乳动物昼夜节律核心成分的分子调节机制
- 批准号:
8667164 - 财政年份:2014
- 资助金额:
$ 34.24万 - 项目类别:
相似国自然基金
高吞吐低时延的多元LDPC码译码算法及其软件架构研究
- 批准号:62301029
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
机理与数据耦合驱动的AI赋能工业软件理论与算法
- 批准号:52335001
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
能量一阶导数的GPU算法和异构并行计算:WESP软件的发展和向国产异构平台的移植
- 批准号:22373112
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向量子模拟算法的量子软件优化技术研究
- 批准号:62302395
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于E级超算的裂隙岩体三维数值流形法高性能算法研究及软件开发
- 批准号:
- 批准年份:2022
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Multi-modal Tracking of In Vivo Skeletal Structures and Implants
体内骨骼结构和植入物的多模式跟踪
- 批准号:
10839518 - 财政年份:2023
- 资助金额:
$ 34.24万 - 项目类别:
A Multi-Modal Wearable Sensor for Early Detection of Cognitive Decline and Remote Monitoring of Cognitive-Motor Decline Over Time
一种多模态可穿戴传感器,用于早期检测认知衰退并远程监控认知运动随时间的衰退
- 批准号:
10765991 - 财政年份:2023
- 资助金额:
$ 34.24万 - 项目类别:
SCH: Using Data-Driven Computational Biomechanics to Disentangle Brain Structural Commonality, Variability, and Abnormality in ASD
SCH:利用数据驱动的计算生物力学来解开 ASD 中脑结构的共性、变异性和异常性
- 批准号:
10814620 - 财政年份:2023
- 资助金额:
$ 34.24万 - 项目类别:
Scaling up computational genomics with tree sequences
用树序列扩展计算基因组学
- 批准号:
10471496 - 财政年份:2021
- 资助金额:
$ 34.24万 - 项目类别:
Multi-parametric Perfusion MRI for Therapy Response Assessment in Brain Cancer
多参数灌注 MRI 用于脑癌治疗反应评估
- 批准号:
9927886 - 财政年份:2020
- 资助金额:
$ 34.24万 - 项目类别: