Mitochondrial Calcium Signaling in Cell Intrinsic Immunity
细胞内在免疫中的线粒体钙信号传导
基本信息
- 批准号:10620267
- 负责人:
- 金额:$ 56.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-08 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressApoptoticArchitectureBasic ScienceBindingBiogenesisBone MarrowCalcium SignalingCandida albicansCellsCitratesCitric Acid CycleClinicalComplexDataDefense MechanismsDetectionEF Hand MotifsExhibitsFoundationsGatekeepingGene ExpressionGoalsHumanHybridsImmune responseImmune systemImmunityImmunologicsInfectionInflammatoryInner mitochondrial membraneIon ChannelLipidsMacromolecular ComplexesMacrophageMediatingMediatorMetabolicMetabolic stressMetabolismMitochondriaMitochondrial MatrixMolecularMolecular MachinesMolecular TargetMonitorMovementMusMutationMyeloid CellsNADPNADPH OxidaseNeuromuscular DiseasesOrganellesOutputPathogen detectionPathogenicityPathway interactionsPhagocytesPhagocytosisPhagosomesPharmaceutical PreparationsPhasePhysiologyPlayProcessProductionPublic HealthPublishingRegulationReportingResearchResourcesRestRoleSensory ReceptorsSentinelSignal TransductionSmall Interfering RNATestingUbiquitinationantimicrobialcalcium uniporterdesignelectron tomographyfascinatefightingimmunomodulatory therapiesimmunoregulationin vivoinnovationinterestlight microscopymicrobialmitochondrial membranemitochondrial metabolismnovelpathogenpathogenic funguspathogenic microbepre-clinicalprogramspyruvate dehydrogenasereconstructionrecruitresponsestoichiometrysynaptic pruningtooltransmission processvacuolar H+-ATPase
项目摘要
PROJECT SUMMARY
The phagocytes of the immune system require a rapid burst of energy to phagocytose and kill pathogens in a timely
manner. Energy demanding macromolecular complexes such as vacuolar ATPase (V-ATPase) and NADPH
oxidase (NOX) complexes are recruited to the phagosome to acidify, oxidize, kill, and digest the pathogenic cargo.
Reprogramming of the metabolic machinery by gene expression is too slow to meet the sharply increased demand
for energy and metabolites. How do the sentinel phagocytes transmit the recognition of pathogens to switch the
primary gears of cellular metabolism so rapidly? Our preliminary data indicated that the Ca2+-selective,
mitochondrial ion channel, MCU, plays a crucial role in the signaling circuits that rapidly connect the sensory
receptors of pathogens to the metabolic outputs necessary for phagosomal killing. Pursuing these tantalizing leads
has now laid a strong scientific foundation to hypothesize that assembly of phagosome-mitochondria proximity
architecture (PMPA) and mitochondrial Ca2+-signaling fuels cell-intrinsic immunity. In Aim1, we define the
mechanisms underlying mitochondria-phagosome interactions triggered by C. albicans. In Aim 2, we define
mechanisms through which mCa2+-signaling is regulated in activated macrophages. In Aim 3, we define the key
metabolic outputs of mCa2+-signaling that drive microbial killing. This research is conceptually innovative because
it unravels fascinating new connections between pathogen mitochondrial physiology, immunometabolism and
microbial killing. Innovations include tools to monitor mCa2+-elevations in primary macrophages executing
phagocytosis and Electron Tomography based 3D reconstructions of Mitochondria-Phagosome interactions. The
research has the potential to reveal design principles that are of salience to other specialized phagocytic processes
such as clearance of apoptotic cells, toxic debris, and synaptic pruning. From a translational/preclinical perspective,
our findings may reveal novel molecular targets and pathways for new immunomodulatory therapies.
项目概要
免疫系统的吞噬细胞需要快速爆发的能量才能及时吞噬并杀死病原体
方式。需要能量的大分子复合物,例如液泡 ATP 酶(V-ATP 酶)和 NADPH
氧化酶(NOX)复合物被招募到吞噬体以酸化、氧化、杀死和消化致病物质。
通过基因表达对代谢机制进行重新编程的速度太慢,无法满足急剧增加的需求
用于能量和代谢物。前哨吞噬细胞如何传递对病原体的识别来切换
细胞新陈代谢的主要齿轮如此迅速?我们的初步数据表明 Ca2+-选择性,
线粒体离子通道(MCU)在快速连接感觉的信号通路中起着至关重要的作用
病原体受体对吞噬体杀伤所需的代谢产物的影响。追寻这些诱人的线索
现在已经奠定了坚实的科学基础来假设吞噬体-线粒体邻近的组装
结构 (PMPA) 和线粒体 Ca2+ 信号传导增强细胞内在免疫力。在 Aim1 中,我们定义
白色念珠菌触发线粒体-吞噬体相互作用的机制。在目标 2 中,我们定义
激活的巨噬细胞中 mCa2+ 信号传导的调节机制。在目标 3 中,我们定义了关键
驱动微生物杀灭的 mCa2+ 信号代谢输出。这项研究在概念上具有创新性,因为
它揭示了病原体线粒体生理学、免疫代谢和
微生物杀灭。创新包括监测初级巨噬细胞执行过程中 mCa2+ 升高的工具
基于吞噬作用和电子断层扫描的线粒体-吞噬体相互作用的 3D 重建。这
研究有可能揭示对其他专门的吞噬过程具有重要意义的设计原理
例如清除凋亡细胞、有毒碎片和突触修剪。从转化/临床前的角度来看,
我们的研究结果可能揭示新的免疫调节疗法的新分子靶点和途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BIMAL N. DESAI其他文献
BIMAL N. DESAI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BIMAL N. DESAI', 18)}}的其他基金
Mitochondrial Calcium Signaling in Cell Intrinsic Immunity
细胞内在免疫中的线粒体钙信号传导
- 批准号:
10297192 - 财政年份:2021
- 资助金额:
$ 56.07万 - 项目类别:
Mitochondrial Calcium Signaling in Cell Intrinsic Immunity
细胞内在免疫中的线粒体钙信号传导
- 批准号:
10424585 - 财政年份:2021
- 资助金额:
$ 56.07万 - 项目类别:
TRPM7 at the Crossroads of Tissue Homeostasis and inflammation
TRPM7 处于组织稳态和炎症的十字路口
- 批准号:
10409807 - 财政年份:2016
- 资助金额:
$ 56.07万 - 项目类别:
The regulation and function of TRPM7 in inflammation
TRPM7在炎症中的调控及功能
- 批准号:
9198955 - 财政年份:2016
- 资助金额:
$ 56.07万 - 项目类别:
TRPM7 at the Crossroads of Tissue Homeostasis and inflammation
TRPM7 处于组织稳态和炎症的十字路口
- 批准号:
10210717 - 财政年份:2016
- 资助金额:
$ 56.07万 - 项目类别:
TRPM7 at the Crossroads of Tissue Homeostasis and inflammation
TRPM7 处于组织稳态和炎症的十字路口
- 批准号:
10569632 - 财政年份:2016
- 资助金额:
$ 56.07万 - 项目类别:
The regulation and function of TRPM7 in inflammation
TRPM7在炎症中的调控及功能
- 批准号:
9028940 - 财政年份:2016
- 资助金额:
$ 56.07万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Arginase-1 signaling after neonatal stroke
新生儿中风后精氨酸酶 1 信号转导
- 批准号:
10664501 - 财政年份:2023
- 资助金额:
$ 56.07万 - 项目类别:
Detection of Emergent Mechanical Properties of Biologically Complex Cellular States
生物复杂细胞状态的紧急机械特性的检测
- 批准号:
10832871 - 财政年份:2023
- 资助金额:
$ 56.07万 - 项目类别:
Brain-wide transcriptional profiling after spinal cord injury
脊髓损伤后全脑转录谱分析
- 批准号:
10827193 - 财政年份:2023
- 资助金额:
$ 56.07万 - 项目类别:
Evaluation of smoking-associated genes in disparate Appalachian head and neck cancer
不同阿巴拉契亚头颈癌吸烟相关基因的评估
- 批准号:
10741961 - 财政年份:2023
- 资助金额:
$ 56.07万 - 项目类别:
A novel breast cancer therapy based on secreted protein ligands from CD36+ fibroblasts
基于 CD36 成纤维细胞分泌蛋白配体的新型乳腺癌疗法
- 批准号:
10635290 - 财政年份:2023
- 资助金额:
$ 56.07万 - 项目类别: