Dominance on the Human Genome and Non-additive Polygenic Models for Predicting Complex Traits
人类基因组的主导地位和用于预测复杂性状的非加性多基因模型
基本信息
- 批准号:10755393
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAdmixtureAffectBiologicalBiologyCollaborationsCommunitiesComplexComputing MethodologiesData AnalysesDemographyDevelopmentDiseaseEcologyEuropeanEvolutionGeneticGenomeGenomic SegmentGenomicsHumanHuman GenomeIndividualJournalsKnowledgeMachine LearningMentorsMethodsMinority GroupsModelingModernizationMutationOutcomePatternPhasePhenotypePlayPopulationPopulation GeneticsPopulation HeterogeneityRecording of previous eventsReportingResearch PersonnelResearch TrainingResolutionRoleSeriesShapesStatistical MethodsStudy SubjectTestingTrainingVariantWorkbiobankdisorder riskexperiencefitnessfunctional genomicsgenetic variantgenome wide association studygenome-widegenomic datahuman population geneticsimprovedinsightmachine learning methodnovelpolygenic risk scoreprecision medicinepredictive modelingrisk predictionsimulationtraining opportunitytrait
项目摘要
Project Abstract
Dominance is one of the most fundamental concepts in genetics and has many key implications in population
genetics, as it ultimately determines how selection manifests in a population. However, despite its unarguable
importance, dominance is also one of the least characterized quantities in genetics, especially in humans, with
the major challenge being current methods cannot distinguish dominance from the fitness effect of genomic
variants. This proposed K99/R00 work will systematically address this longstanding problem from a dual-
perspectives, by inferring dominance in humans and quantitatively model its role in shaping the phenotypes of
complex traits and diseases. Specifically, in Aim1, I will develop a powerful machine learning-based method to
infer the realistic distribution of dominance on the human genome in megabase-scale, leveraging archaic
introgressed ancestry in non-African populations that is sensitive to dominance variation in genomic regions. In
Aim 2, I will develop non-additive polygenic models accounting for dominance in full genomic regions to identify
complex traits profiled in UK Biobank that deviate from additive models, improve the accuracy of phenotype and
disease risk predictions, and contribute to an in-depth understanding of complex trait biology. Finally, in Aim 3
(R00 phase), I will extend these approaches to infer dominance variation in worldwide populations and
investigate how dominance, combined with selection and admixture, determines complex trait phenotypes in
diverse human populations. The mentored phase of this work will take place at the Department of Ecology and
Evolutionary Biology at UCLA, where Dr. Zhang will have access to rich training opportunities and be supported
by active scientific communities, including numerous seminar series, journal clubs, and networking activities. Dr.
Kirk Lohmueller (primary mentor) and Dr. Sriram Sankararaman (co-mentor) will train Dr. Zhang in computational
and statistical methods in population genetics, machine learning applications, and large-scale disease
association data analysis. The research trainings, collaborations, and professional development during the K99
phase will assist Dr. Zhang in becoming an independent investigator in human population genetics.
项目摘要
优势是遗传学中最基本的概念之一,对人口有许多关键影响
遗传学,因为它最终决定了选择在群体中的表现方式。然而,尽管其无可争议
重要性,优势也是遗传学中最不具有特征的数量之一,尤其是在人类中,
主要挑战是当前的方法无法区分基因组的优势和适应度效应
变体。这项拟议的 K99/R00 工作将从双方面系统地解决这个长期存在的问题
通过推断人类的主导地位并定量模拟其在塑造人类表型中的作用
复杂的性状和疾病。具体来说,在 Aim1 中,我将开发一种强大的基于机器学习的方法来
利用古老的算法,推断出百万碱基规模的人类基因组优势的实际分布
非非洲人群中的渐渗祖先对基因组区域的显性变异敏感。在
目标 2,我将开发非加性多基因模型来解释全基因组区域的优势,以识别
英国生物库中描述的复杂性状偏离了加性模型,提高了表型和
疾病风险预测,并有助于深入了解复杂的性状生物学。最后,在目标 3 中
(R00 阶段),我将扩展这些方法来推断全球人口的优势变化,
研究显性如何与选择和混合相结合,决定复杂的性状表型
多样化的人口。这项工作的指导阶段将在生态学系进行
加州大学洛杉矶分校进化生物学,张博士将获得丰富的培训机会并得到支持
活跃的科学界,包括众多研讨会系列、期刊俱乐部和网络活动。博士。
Kirk Lohmueller(主要导师)和 Sriram Sankararaman 博士(联合导师)将对张博士进行计算方面的培训
群体遗传学、机器学习应用和大规模疾病中的统计方法
关联数据分析。 K99 期间的研究培训、合作和专业发展
该阶段将帮助张博士成为人类群体遗传学的独立研究者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xinjun Zhang其他文献
Xinjun Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xinjun Zhang', 18)}}的其他基金
Dominance on the human genome and non-additive polygenic models for predicting complex traits
人类基因组的优势和用于预测复杂性状的非加性多基因模型
- 批准号:
10283330 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Dominance on the human genome and non-additive polygenic models for predicting complex traits
人类基因组的优势和用于预测复杂性状的非加性多基因模型
- 批准号:
10456164 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Uncovering sources of human gene expression variation in a globally diverse cohort
揭示全球多样化群体中人类基因表达变异的来源
- 批准号:
10607411 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
BridgePRS: bridging the gap in polygenic risk scores between ancestries.
BridgePRS:缩小祖先之间多基因风险评分的差距。
- 批准号:
10737057 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Empowering gene discovery and accelerating clinical translation for diverse admixed populations
促进基因发现并加速不同混合人群的临床转化
- 批准号:
10584936 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Understanding Alzheimer disease heterogeneity in Hispanic populations.
了解西班牙裔人群中阿尔茨海默病的异质性。
- 批准号:
10449014 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Understanding the Increased Risk of Childhood Acute Lymphoblastic Leukemia in Latinos
了解拉丁裔儿童儿童急性淋巴细胞白血病风险增加
- 批准号:
10629825 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别: