Leveraging artificial intelligence methods and electronic health records for pediatric pharmacovigilance
利用人工智能方法和电子健康记录进行儿科药物警戒
基本信息
- 批准号:10750074
- 负责人:
- 金额:$ 48.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:Academic Medical CentersAddressAdolescentAdultAdverse eventAdverse reactionsAffectAreaBehaviorCharacteristicsChildChildhoodClinicalClinical Decision Support SystemsClinical TrialsCodeCongenital AbnormalityDataData SourcesDatabase Management SystemsDatabasesDevelopmentDrug CombinationsDrug ExposureDrug InteractionsDrug usageEarly DiagnosisEffectivenessElectronic Health RecordEthicsExclusionFundingFutureGoalsHealth InsuranceHealthcareInfantKnowledgeMachine LearningMarketingMedicaidMethodologyMethodsMonitorMothersNatural Language ProcessingNewborn InfantOutcomePatientsPerformancePharmaceutical PreparationsPharmacoepidemiologyPhysiologicalPopulationPregnancyPregnant WomenReal-Time SystemsRegulationReportingResearchRiskSafetySerious Adverse EventStructureSubgroupSystemTeratogenic effectsTestingTextThalidomideTimeToxic effectTranslatingTranslational ResearchUnited States Food and Drug AdministrationUpdateWomanWorkWorld Healthabsorptionadverse drug reactionartificial intelligence methodclinical decision supportclinical practicedeep learningdrug developmentdrug testingelectronic health record systemelectronic structurehealth determinantsimprovedinsurance claimsoff-label usepediatric patientspharmacovigilancephenomepost-marketpregnantpreventrecruitreproductiveresearch studysafety assessmentsecondary analysisside effectsubstance usetooltranslational potentialtranslational studytrendtrial design
项目摘要
PROJECT SUMMARY
One overarching goal of the US Food and Drug Administration is to effectively implement post-market
pharmacovigilance capabilities of already approved medications. Achieving this goal for pediatric population is
particularly challenging. For example, little is currently known about the safety, risks, drug-interactions, and
teratogenic effects of many drugs used during pregnancy due to the strict regulations imposed for the
participation of pregnant women in drug development trials. Further, safety and efficacy of many drugs for
pediatric use is scarce due to the lack of clinical trials on children. For this reason, pediatric practice often
involves “off-label” use of drugs with unknown side effects. This may cause unpredictable and tragic effects in
pediatric patients including severe adverse drug reactions and toxicity that can affect their development and
future reproductive capacity. The availability of large volumes of real-world healthcare data such as electronic
health records (EHRs) provides an opportunity to meet the critical need of effectively investigating the effect of
drug exposures on pediatric populations at large scale. Our goal is to conduct drug- and phenome-wide
association studies on a large EHR database of mother-child dyads that will allow us to study adverse pediatric
outcomes associated with 1) drug and substance use exposures of mothers during and before pregnancy; and
2) drug exposures of children during all their developmental milestones. Secondary analyses will include
associations between substance use exposure of mothers and pediatric outcomes, drug-drug interaction wide
association studies, and drug-substance use interaction wide association studies. Further, we will leverage
artificial intelligence methods such as natural language processing (NLP) and machine learning to address
exposure misclassification and improve pediatric outcome identification for the proposed studies. Our project
aims are to: 1) conduct high-throughput pharmacoepidemiologic studies to identify adverse pediatric outcomes,
and 2) evaluate the clinical utility of a real-time pediatric pharmacovigilance system using stakeholder
engagement strategies. The expected outcome of this proposal is a stakeholder-informed tool to monitor
adverse drug reactions of children in real-time. This will pave the way towards the deployment of a clinical
decision support system for early detection of adverse drug reactions in pediatric populations and for real-time
identification of patients who are at risk of such negative outcomes.
项目摘要
美国食品和药物管理局的一个总体目标是有效实施后市场
已经批准的药物的药物警戒能力。实现这一目标的小儿人口是
特别是挑战。例如,目前对安全性,风险,毒品互动以及
由于对严格的法规施加的严格法规
孕妇参与药物开发试验。此外,许多药物的安全性和效率
由于缺乏对儿童的临床试验,因此缺乏儿科使用。因此,小儿练习经常
涉及使用具有未知副作用的药物的“非标签”使用。这可能会在
儿科患者,包括严重不良药物反应和毒性,可能影响其发育和
未来的生殖能力。大量实际医疗保健数据(例如电子)的可用性
健康记录(EHRS)提供了满足有效调查效果的关键需求的机会
大规模对小儿种群的药物暴露。我们的目标是进行毒品和现象
关于大型EHR母子二元数据库的协会研究,该数据库将使我们能够学习不良的小儿
与1)在怀孕期间和妊娠之前和药物的使用相关的结果;和
2)儿童在所有发展里程碑中的药物暴露。次要分析将包括
母亲的药物使用暴露与小儿结局之间的关联,药物相互作用范围
协会研究和药物 - 固定性使用相互作用广泛的关联研究。此外,我们将利用
人工智能方法,例如自然语言处理(NLP)和机器学习以解决
暴露分类错误并改善了拟议研究的小儿结果鉴定。我们的项目
目的是:1)进行高通量药物ePIDEPIDEMIologic研究以识别不良的小儿结局,
2)使用利益相关者评估实时儿科药物守护系统的临床实用性
参与策略。该提案的预期结果是一种了解利益相关者的工具来监视
儿童实时的药物反应不良。这将为临床部署铺平道路
决策支持系统,用于早期检测小儿种群中不良药物反应和实时的药物反应系统
鉴定有这种负面结果风险的患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cosmin Adrian Bejan其他文献
Cosmin Adrian Bejan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cosmin Adrian Bejan', 18)}}的其他基金
Leveraging Electronic Health Records and Genomic Biobanks for Kidney Stone Disease
利用电子健康记录和基因组生物库治疗肾结石疾病
- 批准号:
10395992 - 财政年份:2021
- 资助金额:
$ 48.13万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of Foundational Collaborations and Capabilities to Advance Exposome Research in Childhood-onset Rheumatic Diseases and other Pediatric Autoimmune Conditions
发展基础合作和能力,推进儿童期风湿病和其他儿童自身免疫性疾病的暴露组研究
- 批准号:
10868992 - 财政年份:2023
- 资助金额:
$ 48.13万 - 项目类别:
The Hektoen Institute of Medical Research Site Consortium - Adolescent Medicine Trials Network for HIV/AIDS Interventions (ATN) Operations and Collaborations Center (UM2 Clinical Trial Optional)
Hektoen 医学研究所站点联盟 - HIV/艾滋病干预青少年医学试验网络 (ATN) 运营和合作中心(UM2 临床试验可选)
- 批准号:
10709606 - 财政年份:2022
- 资助金额:
$ 48.13万 - 项目类别:
Predicting Psychiatric Readmission with Machine Learning in Children and Adolescents
通过机器学习预测儿童和青少年的精神病再入院
- 批准号:
10710526 - 财政年份:2022
- 资助金额:
$ 48.13万 - 项目类别:
The Hektoen Institute of Medical Research Site Consortium - Adolescent Medicine Trials Network for HIV/AIDS Interventions (ATN) Operations and Collaborations Center (UM2 Clinical Trial Optional)
Hektoen 医学研究所站点联盟 - HIV/艾滋病干预青少年医学试验网络 (ATN) 运营和合作中心(UM2 临床试验可选)
- 批准号:
10599560 - 财政年份:2022
- 资助金额:
$ 48.13万 - 项目类别:
Predicting Psychiatric Readmission with Machine Learning in Children and Adolescents
通过机器学习预测儿童和青少年的精神病再入院
- 批准号:
10604849 - 财政年份:2022
- 资助金额:
$ 48.13万 - 项目类别: