Contamination Inspection and Disinfection for Cleanliness Management in Long-Term Care Facilities
长期护理机构清洁管理的污染检查和消毒
基本信息
- 批准号:10739742
- 负责人:
- 金额:$ 5.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:Adenosine TriphosphateAdoptedAlgorithmic AnalysisAlgorithmsAreaBioluminescenceBody FluidsClientCollaborationsComputer softwareConsumptionCountryDetectionDevelopmentDisinfectionDocumentationEducationElderlyFamilyFarGoFogsFrightFutureHealth care facilityHealthcareInfectionInfection ControlLong-Term CareLongitudinal StudiesMachine LearningMapsMeasuresMethodsMonitorNorth DakotaNursing HomesOutcomePhasePilot ProjectsProceduresProcessResearch PersonnelResidual stateRiskSalivaSiteSmall Business Innovation Research GrantSpecific qualifier valueSpectroscopy, Fourier Transform InfraredSpottingsStandardizationSurfaceSwabSystemTechnologyTestingTimeTrainingUniversitiesVisualcomparative efficacycostdata managementdesignimprovedpathogenpilot testprogramsremediationrespiratoryresponsesoftware developmenttoolusability
项目摘要
ABSTRACT
While the U.S. has more nursing-home residents than any other country, families have become reluctant to send
their elders to long term care facilities (LTCFs) due to fear of rampant infection. These facilities need to raise the
confidence of their clients by revamping their approaches to cleanliness and providing reassuring proof to
families that their elders will be safe. Effective cleaning in LTCFs involves monitoring the efficacy of the cleaning
methods used. Cleaning procedures in LTCFs are increasingly moving towards more standardized methods,
while monitoring of cleaning efficacy is generally based on visual assessment. Some facilities are beginning to
adopt measures beyond visual assessment such as swab-based Adenosine Triphosphate (ATP)
bioluminescence, but these costly and time-consuming swab tests are not widely adopted. Studies show most
LTCFs would benefit from standardized tools such as checklists, more frequent staff education including specific
product use training. The main objective of this project is to bring a new auditing system to long-term care
facilities that provides instant contamination detection, rapid surface disinfection of invisible contamination (e.g.
body fluids, saliva and respiratory droplets that can host pathogens) and documents proof of cleanliness. We
believe our Contamination, Sanitization Inspection and Disinfection (CSI-D) technology will change
cleanliness monitoring standards by allowing users to see contamination, in real time, for immediate remediation.
The CSI-D system is not intended to be a primary disinfection or cleaning tool; instead, it acts as a post-cleaning
audit solution complementary to other post-cleaning auditing tools (ATP, FT-IR, etc.), as well as providing
documentation of cleanliness. The system’s disinfection capability is intended to provide spot disinfection only
during audits or incident response and not employed as a large area disinfection method (e.g. fogging).
This Phase I SBIR will validate the usability of the CSI-D as a post cleaning auditing system to detect, disinfect
and document residual contamination, and apply risk-mapping algorithms to improve the current management
of cleanliness in LTCFs. This project is a collaboration with AI and Machine learning researchers at the University
of North Dakota and Valley Senior Living in Grand Forks, ND, and Edgewood Healthcare in Fargo, ND who will
provide important input to the design process and access to long term care facilities for pilot studies. Aim 1 will
include building the CSI-D software for long term care facilities, including developing the software specification,
software for data management, and the contamination detection algorithm. Aim 2 will include the pilot test at
LTCFs, including the development of the audit inspection procedure (task list), comparing efficacy of CSI-D with
visual assessment and ATP bioluminescence detection, and development of the dynamic risk analysis algorithm.
Future directions: Phase II will include more extensive longitudinal studies, with up to 20 of 64 Edgewood
Healthcare facilities using the CSI-D technology as an auditing tool for one year, and thereafter the facilities with
SafetySpect cleanliness monitoring program will be compared with remaining sites on infection control outcomes.
抽象的
虽然美国拥有的护士居民比其他任何国家都多,但家庭已经不愿发送
由于担心猖ramp的感染,他们的长者到长期护理设施(LTCF)。这些设施需要提高
通过改善清洁度的方法并提供令人放心的证据来对客户的信心
他们的长老会安全的家庭。 LTCF中有效清洁涉及监视清洁的效率
使用的方法。 LTCF中的清洁程序越来越多地朝着更标准化的方法迈进
在监测清洁效率的同时,通常基于视觉评估。一些设施开始
采取超出视觉评估的措施,例如基于拭子的三磷酸腺苷(ATP)
生物发光,但是这些昂贵且耗时的拭子测试并未被广泛采用。研究最多显示
LTCF将受益于标准化工具,例如清单,更频繁的员工教育,包括特定的教育
产品使用培训。该项目的主要目的是将新的审计系统带入长期护理
提供即时污染检测的设施,无形污染的快速表面消毒(例如
体液,唾液和呼吸液滴,可以托管病原体)并记录清洁度的证明。我们
相信我们的污染,消毒检查和消毒(CSI-D)技术将改变
清洁度监视标准通过允许用户实时看到污染以立即修复。
CSI-D系统并非旨在是主要的消毒或清洁工具;相反,它是清洁后的
审核解决方案的完成,用于其他清洁后审核工具(ATP,FT-IR等),并提供
清洁的文档。该系统的消毒能力旨在仅提供现场消毒
在审核或事件响应期间,未作为大面积消毒方法雇用(例如雾化)。
此阶段I SBIR将验证CSI-D作为后清洁审计系统的可用性来检测,消毒
并记录剩余污染,并应用风险映射算法以改善当前管理
LTCF中的清洁度。该项目是与大学的AI和机器学习研究人员合作
北达科他州和山谷的高级居住在北国大福克斯和北卡罗来纳州法戈的Edgewood Healthcare
为设计过程提供重要的意见,并访问了试点研究的长期护理设施。目标1意志
包括为长期护理设施构建CSI-D软件,包括开发软件规范,
用于数据管理的软件和污染检测算法。 AIM 2将包括在
LTCF,包括开发审计检查程序(任务列表),将CSI-D的效率与
视觉评估和ATP生物发光检测以及动态风险分析算法的发展。
未来的方向:第二阶段将包括更广泛的纵向研究,其中有64个Edgewood中有20个
使用CSI-D技术作为审计工具一年的医疗机构,此后设施
Safetyspect的清洁监测计划将与感染控制结果的其余站点进行比较。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kouhyar Tavakolian其他文献
Kouhyar Tavakolian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kouhyar Tavakolian', 18)}}的其他基金
Contamination Inspection and Disinfection for Incident and Cleanliness Management in Long Term Care Facilities
长期护理机构中事故和清洁管理的污染检查和消毒
- 批准号:
10482137 - 财政年份:2022
- 资助金额:
$ 5.5万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
- 批准号:
10735564 - 财政年份:2023
- 资助金额:
$ 5.5万 - 项目类别:
Accelerating genomic analysis for time critical clinical applications
加速时间紧迫的临床应用的基因组分析
- 批准号:
10593480 - 财政年份:2023
- 资助金额:
$ 5.5万 - 项目类别:
Achieving Model Fairness on Automatic Primary Open-angle Glaucoma Screening
实现自动原发性开角型青光眼筛查的模型公平性
- 批准号:
10726928 - 财政年份:2023
- 资助金额:
$ 5.5万 - 项目类别:
A visualization interface for BRAIN single cell data, integrating transcriptomics, epigenomics and spatial assays
BRAIN 单细胞数据的可视化界面,集成转录组学、表观基因组学和空间分析
- 批准号:
10643313 - 财政年份:2023
- 资助金额:
$ 5.5万 - 项目类别:
Remote Kinesiology for Improving Human Health with Auto-locating Compliant Motion Tracking Stickers and Artificial Intelligence
通过自动定位兼容运动跟踪贴纸和人工智能来改善人类健康的远程运动机能学
- 批准号:
10751952 - 财政年份:2023
- 资助金额:
$ 5.5万 - 项目类别: