Exploring brain perivascular fibroblasts in health and cerebral amyloid angiopathy
探索大脑血管周围成纤维细胞在健康和脑淀粉样血管病中的作用
基本信息
- 批准号:10739076
- 负责人:
- 金额:$ 13.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AblationAccelerationAddressAdultAdvisory CommitteesAffectAlzheimer&aposs DiseaseAlzheimer&aposs disease pathologyAmyloidAmyloid beta-Protein PrecursorArteriesAstrocytesBiologyBlood VesselsBlood flowBrainCalciumCalcium SignalingCellsCerebral Amyloid AngiopathyCerebrovascular systemChildClinicalClinical PathologyCommunicationComplexCoupledDevelopmental BiologyDiameterDiseaseDisease ProgressionEndothelial CellsEnsureEtiologyEventExtracellular Matrix ProteinsFacultyFibroblastsFunctional disorderFutureGene Expression ProfileGenesGenetic TranscriptionGoalsHealthHypercapniaImageImpairmentInvestigationKnowledgeLifeMediatingMentorshipMethodsMicrovascular DysfunctionModelingMusMutationOpticsPathologyPathway interactionsPeptide Initiation FactorsPericytesPhasePhysiologyPopulationRegenerative MedicineReporterReportingResearchResearch InstituteRoleRunningSmooth Muscle MyocytesStructureTechniquesTestingTg2576TherapeuticTissuesTrainingTransgenic OrganismsVascular Diseasesarterioleawakebrain healthcareerconstrictionexperiencegenetic approachimprovedin vivoin vivo imaginginnovationmouse modelneuropathologyneurovascularneurovascular couplingskillstherapy developmenttooltranscriptomicstwo photon microscopyvascular factorvasomotionvenulewasting
项目摘要
PROJECT SUMMARY
Maintaining a stable brain vascular network is crucial for ensuring overall brain health throughout life.
Perivascular cells, like pericytes and smooth muscle cells, are crucial to maintain the integrity of the brain
vasculature. Loss of pericytes and smooth muscle cells are noted in Alzheimer’s Disease (AD) and affects
vascular integrity, ultimately contributing to disease pathology. Perivascular fibroblasts (PVFs) are another cell
population along the brain vasculature, however their role is largely unknown. PVFs express numerous
extracellular matrix proteins that are uniquely found on arterioles and venules but not capillaries. My preliminary
investigations indicate that PVFs maintain vessel structural stability, particularly along arterioles, in the healthy
brain. Further, I find that arterioles are more tortuous in a mouse model of cerebral amyloid angiopathy (CAA),
and this is associated with a significant reduction in PVFs. CAA is a small vessel disease characterized by the
accumulation of amyloid- on vessels commonly observed in AD. Arterioles and their immediate off-shoots are
important major regulators of blood flow into the brain. In doing so, they undergo extensive dilation and
constriction events which is likely supported in part by extracellular matrix proteins expressed by PVFs. The goal
of this proposal is to determine if PVFs regulate arteriole structure and dynamics in the healthy brain.
Further, my goal is to understand if CAA contributes to PVF loss, altering arteriole structure and
dynamics by affecting the expression of extracellular matrix proteins, ultimately exacerbating CAA.
Understanding these important aspects of the brain vasculature could ultimately provide a potential for
developing therapeutics aimed at limiting AD pathology and improve vascular function.
The training I will receive under the guidance of Dr. Andy Shih, who is an expert in in vivo imaging and brain
vascular physiology in health and disease, will enable me to achieve the goals of this proposal. My training is
further supported by my advisory committee, consisting of Drs. Steven Greenberg, Richard Daneman, and
Timothy Cherry who will enhance my training by providing guidance in CAA clinical pathology, PVF pathobiology
and single-cell transcriptomics, respectively. Upon completion of these studies, I will have gained extensive
knowledge of in vivo imaging, complex vascular physiology and single-cell transcriptomic approaches, in addition
to PVF biology in heath and CAA pathology. These foundational studies and techniques are crucial components
of my proposed independent phase described in this application and will propel my future goals of running an
independent research group studying small vessel diseases in the brain. Further, with the support of Dr. Shih,
my advisory committee, and the faculty at Seattle Children’s Research Institute in the Center of Developmental
Biology and Regenerative Medicine, I will have expanded my experience in scientific communication,
grantsmanship, networking, and mentorship. By continuing to strengthen these crucial skills during my training
phase I will be well poised to guide a successful research group of my own.
项目摘要
保持稳定的脑血管网络对于确保整个生命的整体大脑健康至关重要。
血管周细胞(如周细胞和平滑肌细胞)对于维持大脑的完整性至关重要
脉管系统。在阿尔茨海默氏病(AD)中注意到周细胞和平滑肌细胞的丧失,并影响
血管完整性,最终导致疾病病理学。血管周成纤维细胞(PVF)是另一个细胞
沿着脑脉管系统的人群,但是它们的作用在很大程度上尚不清楚。 PVF表达了许多
细胞外基质蛋白在小动脉和静脉均具有独特性,而不是毛细血管。我的初步
研究表明,PVF在健康中保持血管结构稳定性,尤其是沿动脉的稳定性
脑。此外,我发现小动脉在脑淀粉样血管病的小鼠模型中更曲折(CAA),
这与PVF的显着降低有关。 CAA是一种小血管疾病,其特征是
在AD中通常观察到的血管上的淀粉样蛋白-的积累。小动脉及其立即分离是
血液流入大脑的重要主要调节剂。这样,他们经历了广泛的词典和
收缩事件可能部分由PVF表达的细胞外基质蛋白支持。目标
该建议的是确定PVFS是否调节健康大脑中的动脉结构和动力学。
此外,我的目标是了解CAA是否有助于PVF损失,改变动脉结构和
通过影响细胞外基质蛋白的表达,最终加剧CAA的动力学。
了解大脑脉管系统的这些重要方面,最终可以为
开发旨在限制AD病理并改善血管功能的治疗。
我将在Andy Shih博士的指导下接受的培训,Andy Shih博士是体内成像和大脑专家
健康和疾病中的血管生理学将使我能够实现该提案的目标。我的训练是
由我的咨询委员会进一步支持,由Drs组成。史蒂文·格林伯格,理查德·丹曼和
蒂莫西·樱桃(Timothy Cherry)将通过提供CAA临床病理学,PVF病理生物学来增强我的培训
和单细胞转录组学分别。完成这些研究后,我将获得广泛
了解体内成像,复杂的血管生理学和单细胞转录组方法,另外
热和CAA病理学中的PVF生物学。这些基本研究和技术是关键的组成部分
在本应用程序中描述的我提出的独立阶段中,将推动我未来的目标
独立研究小组研究大脑中的小血管疾病。此外,在Shih博士的支持下
我的咨询委员会以及发展中心西雅图儿童研究所的教职员工
生物学和再生医学,我将扩大我在科学交流方面的经验,
授予技巧,网络和精神训练。通过在我的培训期间继续增强这些关键技能
第一阶段将被毒死,以指导自己成功的研究小组。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephanie Bonney其他文献
Stephanie Bonney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephanie Bonney', 18)}}的其他基金
Cellular Behaviors of Perivascular Fibroblasts in Cerebral Ischemia
脑缺血时血管周围成纤维细胞的细胞行为
- 批准号:
10040335 - 财政年份:2020
- 资助金额:
$ 13.17万 - 项目类别:
Cellular Behaviors of Perivascular Fibroblasts in Cerebral Ischemia
脑缺血时血管周围成纤维细胞的细胞行为
- 批准号:
10320730 - 财政年份:2020
- 资助金额:
$ 13.17万 - 项目类别:
相似国自然基金
基于腔光机械效应的石墨烯光纤加速度计研究
- 批准号:62305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
- 批准号:52305621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
位移、加速度双控式自复位支撑-高层钢框架结构的抗震设计方法及韧性评估研究
- 批准号:52308484
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高离心加速度行星排滚针轴承多场耦合特性与保持架断裂失效机理研究
- 批准号:52305047
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于偏心光纤包层光栅的矢量振动加速度传感技术研究
- 批准号:62305269
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanisms of Cardiac Injury Resolution by CX3CR1+ Macrophages
CX3CR1巨噬细胞解决心脏损伤的机制
- 批准号:
10719459 - 财政年份:2023
- 资助金额:
$ 13.17万 - 项目类别:
Investigating cerebrovascular dysfunction and cerebral atrophy in severe traumatic brain injury
严重颅脑损伤中脑血管功能障碍和脑萎缩的调查
- 批准号:
10742569 - 财政年份:2023
- 资助金额:
$ 13.17万 - 项目类别:
Development of a new class of BLVRB-targeted redox therapeutics in breast cancer
开发一类新型 BLVRB 靶向乳腺癌氧化还原疗法
- 批准号:
10759653 - 财政年份:2023
- 资助金额:
$ 13.17万 - 项目类别:
Microvascular Neuroimaging in Age-related Alzheimer's Disease and Tauopathies
年龄相关性阿尔茨海默病和 Tau蛋白病的微血管神经影像学
- 批准号:
10738372 - 财政年份:2023
- 资助金额:
$ 13.17万 - 项目类别:
PGRMC Proteins as Markers of Fertility and Overall Health Status
PGRMC 蛋白作为生育力和整体健康状况的标志
- 批准号:
10729068 - 财政年份:2023
- 资助金额:
$ 13.17万 - 项目类别: