Improving the Detection of Hypertrophic Cardiomyopathy Using Machine Learning Applied to Electronic Health Record Data
利用机器学习应用于电子健康记录数据来改善肥厚型心肌病的检测
基本信息
- 批准号:10740278
- 负责人:
- 金额:$ 17.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
PROJECT SUMMARY
Hypertrophic cardiomyopathy is the most common inherited cardiac muscle disease with an estimated 750,000
affected individuals in the United States. However, only about 100,000 people have been diagnosed, suggesting
that there are significant diagnostic and treatment gaps for individuals with pre-clinical or overt disease, as well
as for their at-risk family members. Therefore, it is important to identify individuals who should undergo evaluation
for earlier diagnosis and targeted treatment, prior to the development of highly morbid outcomes including heart
failure, arrhythmias, stroke, and sudden death. The electronic health record offers a source of high dimensional,
longitudinal phenotype information that can be leveraged to create more sensitive and specific diagnostic
algorithms. In this patient-oriented mentored career development award proposal, Dr. Nosheen Reza aims to
improve the ability to identify individuals with hypertrophic cardiomyopathy through creation and evaluation of
machine learning classification models that leverage electronic health record data derived from diverse
populations. In Aim 1, she will derive and validate a multi-institutional electrocardiogram-based model for the
detection of hypertrophic cardiomyopathy using data from the Penn Medicine electronic health record and will
evaluate whether the addition of additional electronic health record-derived traits to this model improves the
model's ability to detect patients with hypertrophic cardiomyopathy. In Aim 2, she will externally validate the best
performing electronic health record-derived models in two large independent health systems. In Aim 3, she will
use implementation science methods to identify clinician-specific barriers to and facilitators of accurate and
timely diagnosis of hypertrophic cardiomyopathy and assess clinicians' attitudes toward the use of an electronic
health record-derived diagnostic model for hypertrophic cardiomyopathy. Taken together, these aims will lead to
prospective dissemination and implementation studies of a generalizable electronic health record-derived
diagnostic tool to facilitate early recognition and risk stratification of individuals with hypertrophic cardiomyopathy.
Dr. Reza, an early career investigator and genetic and advanced heart failure cardiologist, has a long-term goal
of becoming an independently funded cardiovascular data scientist with a focus on applying clinical informatics
tools that leverage electronic health record and genomic data to enable precision medicine in the care of patients
with cardiomyopathy and heart failure. This K23 award will support Dr. Reza in achieving this goal through a
comprehensive and rigorous training plan in bioinformatics, machine learning, and implementation science. Dr.
Reza will be supervised by an outstanding mentorship and advisory team at the University of Pennsylvania
consisting of national leaders in genetic cardiomyopathies, electronic health record-based research, and
translational bioinformatics. The mentored research and career development plan outlined in this proposal will
guide Dr. Reza's transition to an independently funded research career.
项目摘要
肥厚性心肌病是最常见的遗传性心肌疾病,估计为750,000
在美国影响个人。但是,只有大约100,000人被诊断出
对于临床前或公开疾病的个体也存在明显的诊断和治疗差距
至于他们的高危家庭成员。因此,重要的是要确定应该接受评估的个人
对于早期的诊断和有针对性的治疗,在发展高度病态的结果之前
失败,心律不齐,中风和猝死。电子健康记录提供了高维的来源
可以利用的纵向表型信息,以创建更敏感和特定的诊断
算法。在这项以患者为导向的指导职业发展奖提案中,Nosheen Reza博士的目标是
通过创建和评估来提高识别肥厚心肌病的人的能力
机器学习分类模型,利用电子健康记录数据来自多样的数据
人群。在AIM 1中,她将得出并验证一个基于心电图的多机构的模型
使用Penn Medicine Electronic Health Record中的数据检测肥厚的心肌病,并将
评估在该模型中添加其他电子健康记录衍生的特征是否可以改善
模型检测肥厚性心肌病患者的能力。在AIM 2中,她将在外部验证最好的
在两个大型独立卫生系统中执行电子健康记录的模型。在AIM 3中,她会
使用实施科学方法来识别准确和促进者的临床医生特定障碍和促进者
及时诊断肥厚的心肌病并评估临床医生对使用电子的态度
健康记录的肥厚性心肌病的诊断模型。综上所述,这些目标将导致
可推广的电子健康记录衍生的前瞻性传播和实施研究
诊断工具可促进肥厚性心肌病个体的早期识别和风险分层。
早期职业调查员,遗传和高级心力衰竭心脏病专家Reza博士的长期目标
成为一名独立资助的心血管数据科学家,重点是应用临床信息学
利用电子健康记录和基因组数据来实现患者护理的精确药物的工具
患有心肌病和心力衰竭。该K23奖将支持Reza博士通过
生物信息学,机器学习和实施科学方面的全面,严格的培训计划。博士
REZA将由宾夕法尼亚大学的杰出指导和咨询团队监督
由国家遗传性心肌病,基于电子健康记录的研究和
翻译生物信息学。该提案中概述的指导研究和职业发展计划将
指导Reza博士向独立资助的研究职业过渡。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Elucidating Non-Routine Events Arising from Interhospital Transfers
阐明院间转移引起的非常规事件
- 批准号:1074944810749448
- 财政年份:2023
- 资助金额:$ 17.33万$ 17.33万
- 项目类别:
Leveraging artificial intelligence methods and electronic health records for pediatric pharmacovigilance
利用人工智能方法和电子健康记录进行儿科药物警戒
- 批准号:1075007410750074
- 财政年份:2023
- 资助金额:$ 17.33万$ 17.33万
- 项目类别:
Intermediate-Size Expanded Access Trial of Autologous Hybrid TREG/Th2 Cell Therapy (RAPA-501) of Amyotrophic Lateral Sclerosis
肌萎缩侧索硬化症自体杂交 TREG/Th2 细胞疗法 (RAPA-501) 的中型扩大试验
- 批准号:1083446910834469
- 财政年份:2023
- 资助金额:$ 17.33万$ 17.33万
- 项目类别:
Bleeding on Direct Oral Anticoagulants: Identification of Genetic Risk Factors and a Polygenic Predictive Score in Patients with Atrial Fibrillation
直接口服抗凝剂导致的出血:房颤患者遗传风险因素的鉴定和多基因预测评分
- 批准号:1053678910536789
- 财政年份:2022
- 资助金额:$ 17.33万$ 17.33万
- 项目类别:
Novel mechanisms and predictors of VEGF receptor inhibitor-associated hypertension
VEGF 受体抑制剂相关高血压的新机制和预测因子
- 批准号:1067074210670742
- 财政年份:2022
- 资助金额:$ 17.33万$ 17.33万
- 项目类别: