Improving diagnostic sensitivity for difficult-to-lyse microbial samples with nanodroplet technology
利用纳米液滴技术提高难以裂解的微生物样品的诊断灵敏度
基本信息
- 批准号:10628013
- 负责人:
- 金额:$ 99.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-03 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccountingAcinetobacter baumanniiAcousticsAntibodiesBacteriaBindingBiologicalBiological AssayBiotechnologyBloodCaliforniaCandida albicansCell NucleusCell WallCell surfaceCellsCessation of lifeChemicalsClinicalCommunicable DiseasesCommunitiesCytolysisDNADetectionDevelopmentDevicesDiagnosisDiagnosticDiagnostic SensitivityDrug resistanceDrug resistant Mycobacteria TuberculosisEnterococcus faecalisFluorometryFood SafetyFormulationFoundationsGenesGenus MycobacteriumGram-Positive BacteriaHealthHumanLeadLectinLigand BindingLigandsMeasuresMechanicsMetagenomicsMethodologyMethodsMicrobeModelingMolecular AnalysisMolecular DiagnosisMorbidity - disease rateMycobacterium smegmatisMycobacterium tuberculosisNucleic Acid Amplification TestsNucleic AcidsPathogen detectionPatientsPeptidesPerformancePharmaceutical PreparationsPhasePolymerase Chain ReactionPopulationPredispositionProtocols documentationPublic HealthReagentReproducibilityResearchResistanceSamplingShockSonicationSputumTechniquesTechnologyTestingThickTuberculosis diagnosisUniversitiesUrinecellular resilienceclinical diagnosticsclinically relevantcostdesigndiagnostic platformdirect applicationdrug testingimprovedin-vitro diagnosticsinnovationmechanical forcemicrobialmicrobiomemicrobiome researchmicroorganismmortalitynanoDropletnext generation sequencingnovelnovel diagnosticspathogenpathogen genomicspreservationresiliencesafety testingscreeningstatisticstechnology validationtool
项目摘要
Abstract
Infectious diseases are a leading cause of global morbidity and mortality, accounting for 29% of worldwide
deaths. Next-generation sequencing (NGS) is a useful tool in pathogen detection, strain identification, and drug
susceptibility testing (among other applications). A primary issue for NGS for rapid pathogen genomic analysis
is that raw patient samples typically have a low bacterial load, requiring culturing that can take weeks to months
before a sufficient microbial load is generated. However, culturing is economically and logistically unsustainable
and presents with other biological issues that may confound results. Additionally, enrichment of the pathogen-
specific genes is highly dependent on sample extraction efficiency. Using nucleic acid testing (NAT) and NGS
methods, efficient DNA extraction is essential for the successful and accurate identification of microorganisms
or populations of microbes. Poor DNA extraction when analyzing clinical and environmental samples consisting
of resilient microbes leads to inconclusive or inaccurate diagnostic results. There is a need for high-efficiency
extraction of nucleic acids from hard-to-lyse microorganisms in direct patient samples to facilitate reliable clinical
diagnostic workflows. Triangle Biotechnology (Triangle Bio) is developing a novel and proprietary
technology for efficient, high-throughput, reproducible, and unbiased microbial lysis, based on a
cavitation-enhancing nanodroplet reagent for use with low-cost sonication devices. The proposed
nanodroplets preferentially target to microbes with resilient cell walls and deliver focused mechanical shear
forces. In Phase I, Triangle Bio demonstrated a 6-100x and 2-5x improvement in DNA extraction from
Mycobacterium smegmatis (a model for Mycobacterium tuberculosis [Mtb]) and Enterococcus faecalis (a Gram-
positive bacteria), respectively, compared to commonly used commercial kits. In Phase II, the company will
establish a platform of nanodroplet formulations applicable to a wide range of infectious pathogens with
significant clinical impact. Triangle Bio will accomplish this research through the following three aims: 1) Identify
targeting ligand candidates compatible with 12 representative microbial species and three clinical sample
matrices (Y1), 2) Validate binding and cavitation performance of candidate formulations and optimize workflow
conditions for clinical sample matrices spiked with four target microbial species (Y2-Y3), and 3) Evaluate
workflows by demonstrating improved performance of targeted NGS for diagnosis of drug-resistant Mtb (Y3).
Successful implementation of this technology could have significant impacts on a wide range of applications
requiring reliable microbial lysis techniques, including but not limited to NGS for infectious disease detection and
diagnosis, NGS based food safety testing for infectious pathogens, and clinical and environmental microbiome
studies where resilient microbes can be underrepresented in metagenomic analysis.
抽象的
传染病是全球发病率和死亡率的主要原因,占全球的29%
死亡人数。下一代测序(NGS)是病原体检测,应变鉴定和药物的有用工具
敏感性测试(除其他应用)。 NGS快速病原体基因组分析的主要问题
是原始的患者样品通常具有低细菌负荷,需要培养可能需要数周到几个月的培养
在生成足够的微生物负载之前。但是,培养在经济和逻辑上是不可持续的
并提出可能混淆结果的其他生物学问题。另外,富集病原体
特定基因高度取决于样品提取效率。使用核酸测试(NAT)和NGS
方法,有效的DNA提取对于成功鉴定微生物至关重要
或微生物种群。分析临床和环境样品的DNA提取不良
弹性微生物的诊断结果不确定或不准确。需要高效
在直接患者样品中从难以溶解的微生物中提取核酸,以促进可靠的临床
诊断工作流程。三角生物技术(三角生物)正在开发一种小说和专有
基于A
增强空化的纳米光试剂,可与低成本超声处理装置一起使用。提议
纳米光优先靶向具有弹性细胞壁的微生物,并提供聚焦的机械剪切
力量。在第一阶段,三角形生物表现出6-100倍和2-5倍的DNA提取从
分枝杆菌(结核分枝杆菌[MTB]的模型)和粪肠球菌(Gram-
与常用的商业试剂盒相比,阳性细菌分别。在第二阶段,公司将
建立一个适用于多种感染性病原体的纳米光谱平台
重大临床影响。 Triangle Bio将通过以下三个目的完成这项研究:1)确定
靶向与12种代表性微生物物种和3个临床样本兼容的配体候选物
矩阵(Y1),2)验证候选公式的结合和空化性能并优化工作流程
用四个目标微生物物种(Y2-Y3)和3)评估的临床样品矩阵的临床样品矩阵条件
通过证明靶向NG的性能提高用于诊断药物耐药的MTB(Y3)来进行工作流程。
该技术的成功实施可能会对广泛的应用产生重大影响
需要可靠的微生物裂解技术,包括但不限于NGS进行传染病检测和
诊断,基于NGS的食物安全测试,用于传染病,以及临床和环境微生物组
在元基因组分析中,有弹性微生物的弹性微生物的研究不足。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sandeep Kasoji其他文献
Sandeep Kasoji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sandeep Kasoji', 18)}}的其他基金
Improving diagnostic sensitivity for difficult-to-lyse microbial samples with nanodroplet technology
利用纳米液滴技术提高难以裂解的微生物样品的诊断灵敏度
- 批准号:
10484601 - 财政年份:2020
- 资助金额:
$ 99.84万 - 项目类别:
Improving diagnostic sensitivity for difficult-to-lyse microbial samples with nanodroplet technology
利用纳米液滴技术提高难以裂解的微生物样品的诊断灵敏度
- 批准号:
10081308 - 财政年份:2020
- 资助金额:
$ 99.84万 - 项目类别:
Commercialization of cavitation-enhancing nanodroplets for DNA sample fragmentation in NGS applications
用于 NGS 应用中 DNA 样品碎片化的空化增强纳米液滴的商业化
- 批准号:
10081304 - 财政年份:2018
- 资助金额:
$ 99.84万 - 项目类别:
Commercialization of cavitation-enhancing nanodroplets for DNA sample fragmentation in NGS applications
用于 NGS 应用中 DNA 样品碎片化的空化增强纳米液滴的商业化
- 批准号:
10259765 - 财政年份:2018
- 资助金额:
$ 99.84万 - 项目类别:
相似海外基金
Isolation and characterisation of monoclonal antibodies for the treatment or prevention of antibiotic resistant Acinetobacter baumannii infections
用于治疗或预防抗生素耐药鲍曼不动杆菌感染的单克隆抗体的分离和表征
- 批准号:
MR/Y008693/1 - 财政年份:2024
- 资助金额:
$ 99.84万 - 项目类别:
Research Grant
Generative machine learning for narrow spectrum antibiotic discovery against Acinetobacter baumannii
生成机器学习用于发现针对鲍曼不动杆菌的窄谱抗生素
- 批准号:
477936 - 财政年份:2023
- 资助金额:
$ 99.84万 - 项目类别:
Operating Grants
Mechanistic Studies of Gyrase/Topoisomerase IV-Targeted Antibacterials
旋转酶/拓扑异构酶 IV 靶向抗菌药物的机理研究
- 批准号:
10667862 - 财政年份:2023
- 资助金额:
$ 99.84万 - 项目类别:
Post-translational modification of GlyGly-Cterm Proteins
GlyGly-Cterm 蛋白的翻译后修饰
- 批准号:
10749396 - 财政年份:2023
- 资助金额:
$ 99.84万 - 项目类别:
Conserved structural dynamics of outer-membrane channels in Acinetobacter baumannii as potential drug targets
鲍曼不动杆菌外膜通道的保守结构动力学作为潜在的药物靶点
- 批准号:
494854 - 财政年份:2023
- 资助金额:
$ 99.84万 - 项目类别:
Operating Grants