Investigating Mechanism of Intracellular Rotational Transport with Optical T

利用光 T 研究细胞内旋转运输的机制

基本信息

  • 批准号:
    8368031
  • 负责人:
  • 金额:
    $ 21.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-30 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): With the increased use of engineered nanoparticles in medicine (diagnostics and therapeutics), electronics, cosmetics, and textiles and the corresponding awareness of the toxicity from such nanoparticles, there is a critical need to develop methods to evaluate their toxicity, especially at low concentrations that cause oxidative stress and adverse long-term health effects. Macrophages are the primary defense cells in the lung responsible for uptake, degradation and clearance of foreign particles, all biophysical processes which rely upon an intact cytoskeleton. Impairment of these biophysical processes due to nanoparticle-mediated cytoskeletal oxidation contributes to toxicity via reduced particulate clearance and inflammation. This inflammation and associated overproduction of reactive oxygen species further oxidize RNA/DNA/proteins, leading to fibrosis, mutagenesis and lung cancer. To study how macrophage uptake and transport are affected by toxic nanoparticles, we have developed a novel technique to track intracellular transport of phagocytosed magnetically modulated optical nanoprobes (MagMOONs). These MagMOONs are micron sized tracer particles with one hemisphere coated by gold creating an orientation-dependent scattering and fluorescence signal. Tracking rotational transport via intensity changes allows analysis of many particles simultaneously even at low magnification (e.g. endoscopy). Results from a related technique pioneered by Dr. Miller (Co-I) demonstrate that intracellular rotation rate is a powerful indicator for macrophage health in vivo, and that rotatio is impaired by toxic nanoparticles in vitro. However, Dr. Miller's technique measures only the average transport-mediated rotational diffusion rate from ensembles of millions of cells, and is unable to localize particles or observe motion of individual particles and cells. The objective of this proposal is to extend the biophysical rotation methods to single particles and localized regions via optical tracking of the MagMOONs. Single particle studies will provide a more detailed mechanistic model for intracellular transport and NP- induced cytoskeletal oxidation. Our central hypothesis is that differences in particulate matter composition affect intracellular phagosome transport via ROS generation. These local cytoskeletal oxidations, in concert with the oxidation of secondary messengers and the depletion of antioxidants, cause global cytoskeletal damage and dysfunction, DNA damage, and cell death. We will test this hypothesis by studying the effect of nanoparticle composition on the motion and transport of single magnetic tracer particles in macrophages. We will also use our assay to study the protective effects of ROS scavengers such as NAC. By optically tracking MagMOONs in tissue phantoms we can also show feasibility for eventual in vivo detection in animal models with fewer tracer particles and localization of the particles in the lungs through endoscopy and transdermal X- ray excited optical luminescence (XEOL) imaging. The proposed research is significant because the technique developed in this project will have important applications for detecting and understanding nano-toxicity. PUBLIC HEALTH RELEVANCE: This research project develops a novel biophysical tool for evaluating the toxicity of engineered and environmental nanoparticles within individual cells. The proposed research is relevant to public health because we develop a novel bioanalytical imaging technique to measure nanoparticle mediated cytoskeletal dysfunction and damage (toxicity) on immune system cells. Specifically, we measure toxicity of copper oxide and titanium dioxide which are widely used and have important ramifications for human health.
描述(由申请人提供):随着工程纳米粒子在医学(诊断和治疗)、电子、化妆品和纺织品中的使用增加,以及对此类纳米粒子毒性的相应认识,迫切需要开发评估其毒性的方法。毒性,特别是在低浓度下会导致氧化应激和长期不利的健康影响。巨噬细胞是肺部的主要防御细胞,负责吸收、降解和清除外来颗粒,所有生物物理过程都依赖于完整的细胞骨架。由于纳米颗粒介导的细胞骨架氧化而损害这些生物物理过程,通过减少颗粒清除和炎症而导致毒性。这种炎症和相关的活性氧过度产生进一步氧化 RNA/DNA/蛋白质,导致纤维化、突变和肺癌。为了研究巨噬细胞的摄取和运输如何受到有毒纳米颗粒的影响,我们开发了一种新技术来跟踪吞噬磁调制光学纳米探针(MagMOON)的细胞内运输。这些 MagMOON 是微米大小的示踪粒子,其一个半球涂有金,产生与方向相关的散射和荧光信号。通过强度变化跟踪旋转传输,即使在低放大倍数(例如内窥镜检查)下也可以同时分析许多颗粒。 Miller 博士 (Co-I) 首创的一项相关技术的结果表明,细胞内旋转速率是体内巨噬细胞健康状况的有力指标,而在体外,有毒纳米颗粒会损害旋转速率。然而,米勒博士的技术仅测量数百万个细胞群的平均传输介导的旋转扩散速率,并且无法定位粒子或观察单个粒子和细胞的运动。该提案的目的是通过 MagMOON 的光学跟踪将生物物理旋转方法扩展到单个粒子和局部区域。单颗粒研究将为细胞内运输和 NP 诱导的细胞骨架氧化提供更详细的机制模型。我们的中心假设是颗粒物成分的差异通过 ROS 的产生影响细胞内吞噬体的运输。这些局部细胞骨架氧化,与第二信使的氧化和抗氧化剂的消耗相结合,导致整体细胞骨架损伤和功能障碍、DNA 损伤和细胞死亡。我们将通过研究纳米颗粒成分对巨噬细胞中单个磁性示踪颗粒运动和运输的影响来检验这一假设。我们还将使用我们的检测方法来研究 ROS 清除剂(例如 NAC)的保护作用。通过光学跟踪组织模型中的 MagMOON,我们还可以展示在动物模型中使用较少的示踪粒子进行最终体内检测的可行性,并通过内窥镜检查和透皮 X 射线激发光学发光 (XEOL) 成像对肺部中的粒子进行定位。拟议的研究意义重大,因为该项目开发的技术将在检测和理解纳米毒性方面具有重要的应用。 公共健康相关性:该研究项目开发了一种新型生物物理工具,用于评估单个细胞内工程纳米颗粒和环境纳米颗粒的毒性。拟议的研究与公共卫生相关,因为我们开发了一种新型生物分析成像技术来测量纳米颗粒介导的细胞骨架功能障碍和对免疫系统细胞的损伤(毒性)。具体来说,我们测量了广泛使用并对人类健康产生重要影响的氧化铜和二氧化钛的毒性。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Detecting De-gelation through Tissue Using Magnetically Modulated Optical Nanoprobes (MagMOONs).
使用磁调制光学纳米探针 (MagMOON) 检测组织的去胶作用。
  • DOI:
  • 发表时间:
    2014-12-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nguyen, KhanhVan T;Anker, Jeffrey N
  • 通讯作者:
    Anker, Jeffrey N
Reactive oxygen species generation by copper(II) oxide nanoparticles determined by DNA damage assays and EPR spectroscopy.
通过 DNA 损伤测定和 EPR 光谱测定氧化铜 (II) 纳米粒子产生的活性氧。
  • DOI:
  • 发表时间:
    2017-03
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Angelé;Nguyen, Khanh Van T;Ameer, Fathima S;Anker, Jeffrey N;Brumaghim, Julia L
  • 通讯作者:
    Brumaghim, Julia L
Tuning Localized Surface Plasmon Resonance Wavelengths of Silver Nanoparticles by Mechanical Deformation.
通过机械变形调节银纳米粒子的局域表面等离子体共振波长。
Polyphenol effects on CuO-nanoparticle-mediated DNA damage, reactive oxygen species generation, and fibroblast cell death.
多酚对 CuO 纳米颗粒介导的 DNA 损伤、活性氧生成和成纤维细胞死亡有影响。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JEFFREY N ANKER其他文献

JEFFREY N ANKER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JEFFREY N ANKER', 18)}}的其他基金

X-ray Visualized Implanted Sensor for Prosthetic Joint Infection (X-VIS-PJI)
用于假体关节感染的 X 射线可视化植入传感器 (X-VIS-PJI)
  • 批准号:
    10547368
  • 财政年份:
    2022
  • 资助金额:
    $ 21.63万
  • 项目类别:
Detecting and Monitoring Implant Infection Using X-ray Excited Luminescence Chemical Imaging (XELCI)
使用 X 射线激发发光化学成像 (XELCI) 检测和监测植入物感染
  • 批准号:
    9763460
  • 财政年份:
    2016
  • 资助金额:
    $ 21.63万
  • 项目类别:
Detecting and Monitoring Implant Infection Using X-ray Excited Luminescence Chemical Imaging (XELCI)
使用 X 射线激发发光化学成像 (XELCI) 检测和监测植入物感染
  • 批准号:
    9159723
  • 财政年份:
    2016
  • 资助金额:
    $ 21.63万
  • 项目类别:
Developing Luminescent Strain Sensors to Evaluate and Monitor Osteoinductive Ther
开发发光应变传感器来评估和监测骨感应热
  • 批准号:
    8882465
  • 财政年份:
    2015
  • 资助金额:
    $ 21.63万
  • 项目类别:
Telluride Science Research Meeting on "Frontiers in Biomagnetic Particles III", i
碲化物科学研究会议“生物磁性粒子前沿III”,i
  • 批准号:
    8597691
  • 财政年份:
    2013
  • 资助金额:
    $ 21.63万
  • 项目类别:
Next Generation Nano-prism based LSPR chemical sensors.
下一代基于纳米棱镜的 LSPR 化学传感器。
  • 批准号:
    7323310
  • 财政年份:
    2005
  • 资助金额:
    $ 21.63万
  • 项目类别:
Next Generation Nano-prism based LSPR chemical sensors.
下一代基于纳米棱镜的 LSPR 化学传感器。
  • 批准号:
    7161313
  • 财政年份:
    2005
  • 资助金额:
    $ 21.63万
  • 项目类别:
Next Generation Nano-prism based LSPR chemical sensors.
下一代基于纳米棱镜的 LSPR 化学传感器。
  • 批准号:
    7056609
  • 财政年份:
    2005
  • 资助金额:
    $ 21.63万
  • 项目类别:
Developing Luminescent Strain Sensors to Evaluate and Monitor Osteoinductive Ther
开发发光应变传感器来评估和监测骨感应热
  • 批准号:
    8742734
  • 财政年份:
  • 资助金额:
    $ 21.63万
  • 项目类别:
Developing Luminescent Strain Sensors to Evaluate and Monitor Osteoinductive Ther
开发发光应变传感器来评估和监测骨感应热
  • 批准号:
    9279163
  • 财政年份:
  • 资助金额:
    $ 21.63万
  • 项目类别:

相似国自然基金

生长发育期镧暴露影响钙信号与血脑屏障细胞旁通透性的研究
  • 批准号:
    81502837
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
抑制LIMK2从而直接特异性地提高成骨细胞的力学敏感性对加速骨改建进程的影响及其分子机制的研究
  • 批准号:
    81570955
  • 批准年份:
    2015
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
从肌动蛋白骨架重排探讨益气清热解毒法对肾小球足细胞损伤的影响
  • 批准号:
    81473614
  • 批准年份:
    2014
  • 资助金额:
    74.0 万元
  • 项目类别:
    面上项目
组蛋白乙酰化酶抑制物(INHAT)SET对食管癌细胞"间充质式迁移"的影响及机制研究
  • 批准号:
    U1404817
  • 批准年份:
    2014
  • 资助金额:
    30.0 万元
  • 项目类别:
    联合基金项目
ATP水解机理对肌动蛋白组装成纤维过程的影响
  • 批准号:
    21274038
  • 批准年份:
    2012
  • 资助金额:
    82.0 万元
  • 项目类别:
    面上项目

相似海外基金

Dysregulation of Platelet-von Willebrand Factor Interaction in Trauma-Induced Coagulopathy
创伤性凝血病中血小板-血管性血友病因子相互作用的失调
  • 批准号:
    10559557
  • 财政年份:
    2020
  • 资助金额:
    $ 21.63万
  • 项目类别:
Dysregulation of Platelet-von Willebrand Factor Interaction in Trauma-Induced Coagulopathy
创伤性凝血病中血小板-血管性血友病因子相互作用的失调
  • 批准号:
    10352212
  • 财政年份:
    2020
  • 资助金额:
    $ 21.63万
  • 项目类别:
Dysregulation of Platelet-von Willebrand Factor Interaction in Trauma-Induced Coagulopathy
创伤性凝血病中血小板-血管性血友病因子相互作用的失调
  • 批准号:
    9888677
  • 财政年份:
    2020
  • 资助金额:
    $ 21.63万
  • 项目类别:
Cytoskeletal Mechanisms of Cocaine-Induced Neuroplasticity
可卡因诱导神经可塑性的细胞骨架机制
  • 批准号:
    7758749
  • 财政年份:
    2009
  • 资助金额:
    $ 21.63万
  • 项目类别:
Cytoskeletal Mechanisms of Cocaine-Induced Neuroplasticity
可卡因诱导神经可塑性的细胞骨架机制
  • 批准号:
    7758749
  • 财政年份:
    2009
  • 资助金额:
    $ 21.63万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了